MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of.

Download Report

Transcript MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco Technology Development for InGaAs/InP-channel MOSFETs Mark Rodwell University of.

MRS Spring Symposium, Tutorial: Advanced CMOS—Substrates, Devices, Reliability, and Characterization, April 13, 2009, San Francisco
Technology Development for
InGaAs/InP-channel MOSFETs
Mark Rodwell
University of California, Santa Barbara
[email protected] 805-893-3244, 805-893-5705 fax
Scope of Presentation
Topic of discussion is channel materials for CMOS
...the potential use of III-V materials
...and their advantages and limitations
To understand this,
we must examine in some detail
MOSFET scaling limits
th
Zero -Order
MOSFET Operation
Bipolar Transistor ~ MOSFET Below Threshold
Vbe
Vce
Ic
Because emit t erenergy dist ribut ion is t hermal(exponental)
i
I c  exp(qVbe / kT )
Almostall elect ronsreachingbase pass t hroughit
 I c varieslit t lewit h collect orvolt age
Field-Effect Transistor Operation
source
gate
drain
Positive Gate Voltage
→ reduced energy barrier
→ increased drain current
FETs: Computing Their Characteristics
Cgs ~ A / D
Id  Q /
Cd ch
where   Lg / velectron
Q  CgsVgs  Cd chVds
I d  gm  Vgs  Gds  Vds
where gm  Cgs /  and Ggd  Cd ch / 
FET Characteristics
ID
increasing
VGS
Cgs ~ A / D
Cd ch
VDS
I d  gm  Vgs  Gds  Vds
gm  Cgs /  Ggd  Cd ch / 
  Lg / velectron
FET Subthreshold Characteristics
Vgate  Vox  Vchannel 
 ( qns )
Cox

 ( qns ) kT
qns

q
Stronggate drive : channelcharge varieslinearly withVgs
Weak gate drive : channelcharge variesexponentially withVgs
Classical Long-Channel MOSFET Theory
Assumptions :
1) Moderatelateralfield E in channel.
n( x )
2) T ransportmodeledby drift/diffusion J  qn n( x ) E  qDn
x
3) Exit velocity at end of pinched- off channel: vexit  vthermal  kT / m*
Classic Long-Channel MOSFET Theory
constant-current
mobility-limited
Ohmic
ID
Id
increasing
VGS
velocity-limited
Vgs
Vth
For drain voltageslarger than saturation:
VDS
mobility limitedcurrent
I D ,  coxWg (Vgs  Vth ) / 2 Lg
2
velocity limitedcurrent
I D,v  coxWg vexit (Vgs  Vth )
Generalized Expression
2
 ID   ID

 
I  I
 D ,v   D , 

 1


Classic Long-Channel FET : Far Above Threshold
Id
V
Vth
Vgs
I D  coxWg vexit (Vgs  Vth  V ) for (Vgs  Vth ) / V  1
where V  vexitLg / 
Exponential, Square-Law, Linear FET Characteristics
Relevance of DC Parameters
Digital circuit speed largely controlled by on-state current
Standby power consumption controlled by off-state current
Dynamic power consumption controlled by supply Voltage
→ Examine VLSI Power & Delay Relationships
th
Zero -Order
VLSI Performance
Analysis
CMOS Power Dissipation & Gate Delay
CPFET
Vdd
I on
Gate delay
 gate  CtotalVdd / 2 I on  (Cwire  C NFET  CPFET )Vdd / 2 I on
wiring capacitance usually dominates
Cwire
Dynamicdower dissipation :
CNFET
Off statecurrent
Pdynamic
CtotalVdd2

 frequency (switchingprobability)
2
I off
Vdd
I off / I on  exp( qVth / nkT )
Static Dissipat ion
Pstatic  I off  Vdd
Tradeoffbetween staticand dynamicdissipation : Pdynamic ~ CwireVdd2 f  p Pstatic ~ Vdd IoneqVth / kT
Why Large Current Density is Needed
FET with n  6 fingers,
each of width Wg  totalwidth  nWg
G
S
D
S
D
S
D
Wg
G
T odrive Cwire at delay  ,
requires current I d  CwireVdd / 2 .
I on
If I d /Wg is small, large FET sare needed.
Large FET s long wires  large Cwire .
CPFET
Vdd
Cwire
CNFET
S
Device Requirements
High on-state current per unit gate width
Low off-state current→ subthreshold slope
Low device capacitance;
but only to point where wires dominate
Low supply voltage: probably 0.5 to 0.7 V
What Are Our Goals ?
Low off-state current (10 nA/m) for low static dissipation
→ good subthreshold slope → minimum Lg / Tox
low gate tunneling, low band-band tunneling
Low delay CFET V/I d in gates where
transistor capacitances dominate.
~1 fF/m parasitic capacitances
→ low Cgs is desirable,
but high Id is imperative
Low delay Cwire V/Id in gates where
wiring capacitances dominate.
large FET footprint → long wires between gates
→ need high Id / Wg ; target ~5 mA/m @ V= 0.7V
target ~ 3 mA/m @ V= 0.5V
Improving FETs
by Scaling
Simple FET Scaling
Goal double transistor bandwidth when used in any circuit
→ reduce 2:1 all capacitances and all transport delays
→ keep constant all resistances, voltages, currents
All lengths, widths,
thicknesses reduced 2:1
S/D contact resistivity reduced 4:1
Cgd / Wg ~ 
gm / Wg ~ v / Tox
Cgs / Wg ~   Lg / Tox
Cgs, f / Wg ~ 
Csb / Wg ~   Lc / Tsub
If Tox cannot scale with gate length,
Cparasitic / Cgs increases,
gm / Wg does not increase
hence Cparasitic /gm does not scale
FET scaling: Output Conductance & DIBL
( Cgs expressionneglectsD.O.S. effects)
Cgs ~ Wg Lg / Tox
Id  Q /
Cd ch ~ Wg
where Q  CgsVgs  Cd chVds
transconductance
output conductance
→ Keep Lg / Tox constant as we scale Lg
FET Scaling Laws
LG
gate width WG 
Changes required to double transistor bandwidth:
parameter
gate length
gate dielectric capacitance density
gate dielectric equivalent thickness
channel electron density
source & drain contact resistance
current density (mA/m)
change
decrease 2:1
increase 2:1
decrease 2:1
increase 2:1
decrease 4:1
increase 2:1
nm Transistors: it's all about the interfaces
Metal-semiconductor interfaces (Ohmic contacts):
very low resistivity
Dielectric-semiconductor interfaces (Gate dielectrics):
very high capacitance density
Transistor & IC thermal resistivity.
FET Scaling Laws
LG
gate width WG 
Changes required to double transistor bandwidth:
parameter
gate length
gate dielectric capacitance density
gate dielectric equivalent thickness
channel electron density
source & drain contact resistance
current density (mA/m)
change
decrease 2:1
increase 2:1
decrease 2:1
increase 2:1
decrease 4:1
increase 2:1
What do we do if gate dielectric cannot be further scaled ?
Why Consider MOSFETs with III-V Channels ?
If FETs cannot be further scaled,
instead increase electron velocity:
Id / Wg = qnsv
Id / Qtransit = v / Lg
III-V materials → lower m*→ higher velocity
( need > 1000 cm2 /V-s mobility)
Candidate materials (?) InxGa1-xAs, InP, InAs ( InSb, GaAs)
Difficulties:
High-K dielectrics
III-V growth on Si
building MOSFETs
low m* constrains vertical scaling, reduces drive current
III-V CMOS: The Benefit Is Low Mass, Not High Mobility
Simple drift - diffusion theory,nondegenerate,far above threshold:
I D  coxWg vinjection(Vgs Vth  V )
where vinjection ~ vthermal  (kT / m* )1/2
Id
V  vinjectionLg / 
 Ensure thatV  (Vgs  Vth )
~ 700 mV
Vth
Vgs
low effective mass → high currents
mobilities above ~ 1000 cm2/V-s of little benefit at 22 nm Lg
III-V MOSFETs for VLSI
What is it ?
MOSFET with an InGaAs channel
Why do it ?
low electron effective mass→ higher electron velocity
more current, less charge at a given insulator thickness & gate length
very low access resistance
What are the problems ?
low electron effective mass→ constraints on scaling !
must grow high-K on InGaAs, must grow InGaAs on Si
Device characteristics must be considered in more detail
III-V MOSFET
Characteristics
Low Effective Mass Impairs Vertical Scaling
Shallow electron distribution needed
for high gm / Gds ratio,
low drain-induced barrier lowering.
2
.
Energy of Lth well state  L2 / m*Twell
For thin wells,
only 1st state can be populated.
For very thin wells,
1st state approaches L-valley.
Only one vertical state in well.
Minimum ~ 5 nm well thickness.
→ Hard to scale below 22 nm Lg.
Semiconductor (Wavefunction Depth) Capacitance
Bound stateenergy
2
Ewell  L2 / m*Twell
.
T
3
2
Energy(eV)
Semiconductor capacitance
csemiconductor   / Tsemi
semi
1
0
-1
-2
-3
-4
0
50
100
150
Y (Ang.)
200
250
Density-Of-States Capacitance
E f  Ewell  ns /(nm* / 2 )
(bidirectional motion)
V f  Vwell  s / cdos
where cdos  q2nm* / 2
and n is the # of band minima
Two implications:
- With Ns >1013/cm2, electrons populate satellite valleys
Fischetti et al, IEDM2007
- Transconductance dominated by finite state density
Solomon & Laux , IEDM2001
Current Including Density of States, Wavefunction Depth
Simple drift - diffusion theory,nondegenerate,far above threshold:
I D  ceqWg vthermal (Vgs  Vth  V )
where1/ceq  1/cox  1/csemiconductor  1/cDOS
Id
Vth
Vgs
...but with III-V materials,
we must also consider degenerate carrier concentrations.
Current of Degenerate & Ballistic FET
( Lundstrom, Natori,Laux,
Solomon,Fischetti, Asbeck,...)
Densityof states: dNs / dE f  n  m* / 2 2 (unidirectional mot ion)
Highly degenerate:
elect rondensity: ns  n  ( m* / 2 2 )(E f  Ec ),
Fermi velocity: v f  2( E f  Ec ) / m*  ,
1/ 2
Mean elect ronvelocity: v  ( 4 / 3 )v f .
Current density:
 2  q n  m
J  qns v   2 
 3 
3/ 2
5/ 2
1/ 2
 mA  m* 
 n   84
 
 m  m0 
 ( E
* 1/ 2
 Ec ) / q 
3/ 2
f
2
 E f  Ec 


 1 eV 
3/ 2
2D vs. 1D Field-Effect Transistors in Ballistic Limit
Drain
Id
2D - FET ; InGaAs channel(m*/m0  0.04)
gate
E
1/ 2
Wg
gate
 mA  m*   E f  Ec 
 mA  E f  Ec 
J   84
  
  17


 m  m0   1 eV 
 m  1 eV 
for 0.3eV Fermilevel shift in semiconductor.
3/ 2
3/ 2
Lg
Source
Drains
Id
Array of 1D - FET s;5 nm InGaAs wells @ 6 nm pit ch
gate
E
Ewell
Wg
gate
Lg
Sources
 2 2

 0.37 eV, g m ,well  2 q 2 / h  78S
2
2m * Twell
mA
 78 A  E f  Ec   mA  E f  Ec 
J 

13

3
.
9







 


m
 6 nm  1 eV   m  1 eV 
for 0.3eV Fermilevel shift in semiconduct or
 2.8
mA
m
2D FET vs. Carbon Nanotube FET
Drain
Id
gate
2D - FET ; InGaAs channel( m * /m0  0.04)
 mA  E f  Ec 
mA
J  17
,

  2.8
m
 m  1 eV 
for 0.3eV Fermilevel shift in semiconductor.
3/ 2
E
Wg
gate
Lg
Source
Drains
Array of carbon nanotubes, 5 nm pitch
gate
g m ,tube  2 q 2 / h  78S
Wg
Lg
Sources
mA  E f  Ec 
mA
 78 A  E f  Ec  
J 

15
.
5

4
.
7







 
m  1 eV 
m
 5 nm  1 eV  
for 0.3eV Fermilevel shift in semiconductor
Ballistic/Degenerate Drive Current vs. Gate Voltage
More careful analyses by Taur & Asbeck Groups, UCSD; Fischetti Group: U-Mass: IEDM2007
Drive Current in the Ballistic & Degenerate Limits
 mA   Vgs  Vth 

  
J  K   84
 m   1 V 
0.25
3/ 2
, where K 
0.7 nm, n=6
K

1/ 2
*
dos ,o / cox )  n  ( m / mo )

3/ 2
0.4 nm, n=6
Error bars on Si data
points correct for
(Ef-Ec)>> kT
approximation
0.2
0.15
1  (c

n  m* mo
n = # band minima
cdos,o = density of
states capacitance for
m*=mo & n=1
0.8 nm, n=1
0.1
1.0 nm, n=1
0.05
EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)
0
0.01
0.1
m*/m
1
o
High Drive Current Requires Low Access Resistance
sidewall
gate dielectric
metal gate
source contact
N+ source
drain contact
quantum well / channel
N+ drain
barrier
substrate
For  10% impacton drive current,
I D RS /(VDD  Vth )  0.1
T arget I D / Wg ~ 1.5 mA/m @ (VDD  Vth )  0.3 V
T arget I D / Wg ~ 3 mA/m @ (VDD  Vth )  0.5 V
 RsWg  15  20   m
Materials Selection;
What channel material
should we use ?
Common III-V Semiconductors
B. Brar
450
1350
AlSb
200
250
1550
InSb
220
500
AlAs
GaSb
2170
770
1900
GaAs
200
1420
InAlAs
InGaAs
1460
760
InAs
360
InGaP
450
InP
1350
150
200
170
550
200
6.48 A
lattice
constant
6.48 A lattice constant
5.65 A lattice constant;
grown on GaAs
5.87 A lattice constant;
grown on InP
Semiconductor & Metal Band Alignments
M. Wistey
Materials of Interest
Source: Ioffe Institute
http://www.ioffe.rssi.ru/SVA/NSM/Semicond
rough #s only
material
Si
Ge
GaAs
InP
In0.53Ga0.47As
InAs
n
6
6
1
1
1
1
m*/m0
0.98 ml 1.6 ml 0.063
0.19 mt 0.08 mt
0.08
0.04
0.023
G-(L/X) separation, eV
--
--
0.29
~0.5
0.5
0.73
bandgap, eV
1.12
0.66
1.42
1.34
0.74
0.35
mobility, cm2/V-s
1000
2000
5000
3000
10,000
25,000
high-field velocity
1E7
1E7
1-2E7
3.5E7
3.5E7
???
Drive Current in the Ballistic & Degenerate Limits
 mA   Vgs  Vth 

  
J  K   84
 m   1 V 
0.25
3/ 2
, where K 
0.7 nm, n=6
1  (c

n  m* mo
K
1/ 2
*
dos ,o / cox )  n  ( m / mo )

3/ 2
0.4 nm, n=6
Error bars on Si data
points correct for
(Ef-Ec)>> kT
approximation
0.2
0.15

Ge
0.8 nm, n=1
InGaAs InP
0.1
Si
n = # band minima
cdos,o = density of
states capacitance for
m*=mo & n=1
1.0 nm, n=1
0.05
EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)
0
0.01
0.1
m*/m
1
o
Intervalley Separation
Intervalley separation sets:
-high-field velocity through
intervalley scattering
-maximum electron density
in channel without increased
carrier effective mass
Source: Ioffe Institute
http://www.ioffe.rssi.ru/SVA/NSM/Semicond
Choosing Channel Material: Other Considerations
Ge:
low bandgap
GaAs:
low intervalley separation
InP:
good intervalley separation
Good contacts only via InGaAs→ band offsets
moderate mass→ better vertical scaling
InGaAs
good intervalley separation
bandgap too low ? → quantization
low mass→ high well energy→ poor vertical scaling
InAs:
good intervalley separation
bandgap too low
very low mass→ high well energy→ poor vertical scaling
Non-Parabolic Bands
Bands are ~ parabolic
only for k near zero.
At high energies, bands
become nearly hyperbolic.
 Asypt oticgroup velocit y.
Similar in most semiconduct ors.
P arabolic- band FET expressions
are generally pessimist ic.
Non-Parabolic Bands
T. Ishibashi, IEEE Transactions on Electron Devices, 48,11 , Nov. 2001,
MOSFET Design
Assuming
In0.5Ga0.5As Channel
Device Design / Fabrication Goals
sidewall
gate dielectric
metal gate
source contact
N+ source
drain contact
quantum well / channel
N+ drain
barrier
substrate
Device
gate overdrive
drive current
Ns
700
5
6*1012
500
3
4*1012
300
1.4
2.5*1012
mV
mA/m
1/cm2
Dielectric:
EOT 0.6 nm target, ~1.5 nm short term
Channel :
5 nm thick
 > 1000 cm2/V-s @ 5 nm, 6*1012 /cm2
S/D access resistance:
20 -m resistivity→ 0.5 -m2 contacts , ~2*1013 /cm2 , ~4*1019 /cm3 , 5 nm depth
Target Device Parameters
sidewall
gate dielectric
metal gate
source contact
N+ source
drain contact
quantum well / channel
N+ drain
barrier
substrate
well : ns ~ 5 1012 / cm2 , 5 nm thick
5 1019 / cm3 , 5 nm thick ns  2.5 1013 / cm2
(0.25   m2 ) /(25 nm wide contact)  10   m
Device Structure
&
Process Flow
Device Fabrication: Goals & Challenges
III-V HEMTs are built like this→
Source
Gate
Drain
K Shinohara
....and most
III-V MOSFETs are built like this→
Device Fabrication: Goals & Challenges
Yet, we are developing,
at great effort,
a structure like this →
N+ source
regrowth
r
TiW
r
InGaAs well
InP well
barrier
Why ?
Source
Gate
K Shinohara
Drain
N+ drain
regrowth
Why not just build HEMTs ? Gate Barrier is Low !
Gate barrier is low: ~0.6 eV
Source
Gate
Drain
K Shinohara
Tunneling through barrier
→ sets minimum thickness
Emission over barrier
→ limits 2D carrier density
Ec
EF
Ec
EF
Ewell-G
Ewell-G
At Ns  1013 / cm2 , (E f  Ec ) ~ 0.6 eV
Why not just build HEMTs ?
Gate barrier also lies under source / drain contacts
Source
Gate
Drain
N+ layer
widegap barrier layer
K Shinohara
low leakage:
need high barrier under gate
low resistance:
need low barrier under contacts
Ec
EF
Ec
EF
Ewell-G
N+ cap
layer
Ewell-G
The Structure We Need -- is Much Like a Si MOSFET
sidewall
gate dielectric
metal gate
source contact
N+ source
drain contact
N+ drain
quantum well / channel
barrier
substrate
no gate barrier
under S/D contacts
high-K gate
barrier
Overlap between gate
and N+ source/drain
How do we make this device ?
S/D Regrowth
Process Flow
Regrown S/D FETs: Versions
regrowth under sidewalls
planar regrowth
need thin sidewalls
(now ~20-30 nm)
..or doping under sidewalls
Wistey et al
2008 MBE
conference
S/D Regrowth by Migration-Enhanced Epitaxy
Wistey et al
2008 MBE
conference
MBE growth is line-of-sight → gaps in regrowth near gate edges
MEE provides surface migration during regrowth→ eliminates gaps
SEM Cross Section
SEM Side View (Oblique)
Top of gate
SiO2 dummy
gate
InGaAs Regrowth
Original Interface
Side of gate
InGaAs Regrowth
SEM: Greg Burek
No gaps
Smooth surfaces.
SiO2 dummy
gate
SEM: Uttam Singisetti
High Si activation (4x1019 cm-3).
Quasi-selective: no growth on sidewalls
6
Self-Aligned Planar III-V MOSFETs by Regrowth
N+ InGaAs regrowth,
Mo contact metal
Mo contact metal
gate
Wistey
Singisetti
Burek
Lee
Self-Aligned Planar III-V MOSFETs by Regrowth
Wistey
Singisetti
Burek
Lee
Regrown S/D FETs: Images
Regrown S/D FETs: Images
III-V MOS
InGaAs / InP MOSFETs: Why and Why Not
low m*/m0 → high vcarrier → more current
low m*/m0 → low density of states → less current
0.25
ballistic / degenerate
calculation
0.7 nm, n=6
0.4 nm, n=6
0.2
Error bars on Si data
points correct for (EfEc)>> kT approximation
K
0.15
n = # band minima
cdos,o = density of states
capacitance for m*=mo &
n=1
 mA   Vgs  Vth 
J  K   84
  

 m   1 V 
3/ 2
,
n  m* mo 
1/ 2
0.8 nm, n=1
where K 
0.1
1.0 nm, n=1
0.05
  cdos ,o 
 m*  
1  
  n    

 mo  
  cox 
EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)
0
0.01
0.1
m*/m
1
o
Low m* impairs vertical (hence Lg ) scaling ;
InGaAs no good below 22-nm.
InGaAs allows very low access resistance
Si wins if high-K scales below 0.6 nm EOT; otherwise, III-V has a chance
3/ 2
InGaAs/InP Channel MOSFETs for VLSI
Low-m* materials are beneficial only if EOT cannot scale below ~1/2 nm
Devices cannot scale much below 22 nm Lg→ limits IC density
Little CV/I benefit in gate lengths below 22 nm Lg
Need device structure with very low access resistance
radical re-work of device structure & process flow
Gate dielectrics, III-V growth on Si: also under intensive development