Kerr Black Holes in Quasars and the Formation of Jets Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tchekhovskoy (Princeton) Nadia Zakamska (JHU)… and Fermi-LAT team 5 vii.

Download Report

Transcript Kerr Black Holes in Quasars and the Formation of Jets Roger Blandford, KIPAC Stanford with Jonathan McKinney (KIPAC, Maryland) Sasha Tchekhovskoy (Princeton) Nadia Zakamska (JHU)… and Fermi-LAT team 5 vii.

Kerr Black Holes in Quasars and the
Formation of Jets
Roger Blandford,
KIPAC
Stanford
with
Jonathan McKinney (KIPAC, Maryland)
Sasha Tchekhovskoy (Princeton)
Nadia Zakamska (JHU)…
and Fermi-LAT team
5 vii 2013
Potsdam
1
M87
Seven billion solar masses
0.01 light yr~10 m
(Doeleman et al.)
5 vii 2013
Potsdam
2
Cygnus A
Cygnus A
3C 273
Cygnus A
Pictor A
3C31
NGC 326
3C75
5 vii 2013
Potsdam
3
Sgr A*
3.76 s magnetar?
4 million solar mass hole
5 vii 2013
Potsdam
4
New Radio Telescopes
ALMA
JVLA
SS433
5 vii 2013
Potsdam
5
SUPERLUMINAL EXPANSION
3C 273
G ~ 10 , ~ 3 (FR 1)
S ~ G3
Strong Doppler
Beaming
Intraday
variability Ginzburg
G
30 v 2012
Do we see all the jet?
6
SS433 and the W50 nebula
Ginzburg
30 v 2012
7
5 vii 2013
Potsdam
8
Verification of iron line spin measurement from NGC1365
Sgr A*
5 vii 2013
Potsdam
9
The Bigger Picture
• Galaxy Formation, Evolution/Feedback
–
–
–
–
Major vs Minor mergers
Gas vs Stars
AGN vs Starbursts
Jets vs Winds
• Environmental impact
– (Re-)ionization
– Cluster evolution…
5 vii 2013
Potsdam
10
Scale?
Fermi
• Joint NASA-DOE-Italy- France-JapanSweden, Germany… mission
• Launch June 11 2008
–
Cape Canaveral
• Large Area Telescope: 0.02-300 GeV
–
–
–
–
All sky every 3hr
~100 x Compton Gamma Ray Observatory
~3 g-rays per second
105 electron/positrons per second
• Gamma Ray Burst Monitor
– 0.01-30MeV
5 vii 2013
832AGN+268Candidates+594Unidentified!
Potsdam
11
H.E.S.S.
VERITAS
MAGIC
•
•
•
•
•
5 vii 2013
Cerenkov flashes
0.1-30TeV g-rays
Degree resolution
100 sources
Upgrades
Potsdam
12
New Windows
on the Universe
•Ultra High Energy Cosmic Rays
•Source energies up to 100 Joule!
•May be seeing black hole sources
•eg Centaurus A
5 vii 2013
Auger
Potsdam
13
Quasars for the Impatient
~ 20 examples
G~2
Circinus X-1 (G ~ 15?)
Timescales ~ mass?
5 vii 2013
Potsdam
14
Pulsar Wind Nebulae
Vela-Pavlov-Chandra
5 vii 2013
Potsdam
15
Black Hole Birth Cries?
• Long Gamma-ray Bursts
– ts~3-100 s E ~ 1051 erg (beaming)
– ~1d -1yr afterglows
– Associated with SN?; BH/Magnetar formation
– Jets, G > 300?
• Short bursts
– ts~ 0.1-3 s
– Coalescing neutron stars??
5 vii 2013
Potsdam
16
5 vii 2013
Potsdam
17
3C120
Do variable g-rays
come from
recollimation shocks?
5 vii 2013
Potsdam
18
3C 279: multi-l observation of g-ray flare
• ~30percent optical polarization
=> well-ordered magnetic field
• t~ 20d g-ray variation
=> r~g2ct ~ pc or tdisk?
• Correlated optical variation?
• Ten day lag!
• X-ray, radio uncorrelated
=> different sites
• Rapid polarization swings ~200o
=> rotating magnetic field
in dominant part of source
• PKS 1510+089 -720o!
r ~ 100 or 105 m?
5 vii 2013
Potsdam
Abdo, et al, Hayashida et al
19
TeV Gamma-ray variation
• M87
– 1 day
• PKS 1222+21
PKS 1222+21 (Aleksik et al)
– 10 min
• MKN 501
– 5 min?
• PKS 2155-304
– 2 min?
5 vii 2013
Potsdam
20
PKS1510+089
(Wardle, Homan et al)
bapp=45
z=0.36
•Rapid swings of jet,
radio position angle
•High polarization
~720o (Marscher)
•Channel vs Source
•TeV variation
(Wagner / HESS)
5 vii 2013
Potsdam
•EBL limit
•rmin ; rTeV>rGeV
(B+Levinson)
21
3C454.3
Marscher
2x1050erg s-1 isotropic
Breaks due to recombination radiation?
5 vii 2013
Potsdam
22
MKN 421
•~5min variation
•Inverse Compton?
•outside gammasphere
•G >100?
•cf GRB
Max-Moerbeck et al
•Fermi vs OVRO
•Jet anatomy?
•g-rays before radio
•Jet physiology?
5 vii 2013
Potsdam
23
5 vii 2013
Potsdam
24
Tidal Disruption/QPO Events
• RE J1034+396
– P=1hr?
Reis et al
• Sw J1644+57
– P=200s?
Gierlinski et al
5 vii 2013
Potsdam
25
Last 8 weeks
GRB 130427A
Most powerful, highest energy
G>1000 No ns
PSR J1745-2900
Sgr A* orbit
3 flares
Rapid flares with
L t >> <u> (vt)3
5 vii 2013
Potsdam
26
Astrophysical Black Holes
• Kerr Metric
– Mass m=M8AU=500M8s=2 x 1062 M8 erg
– Angular momentum a < m
– Event Horizon r+=m+(m2+a2)1/2
– Area A=8pmr+=16pm02, increases
– Irreducible mass m0=m[{1+(1+a2/m2)1/2}/2]1/2
– Reducible mass m-m0<0.29m
– Spin W = a / 4m02
– Ergosphere rergo=m+(m2+a2cos2q)1/2
5 vii 2013
Potsdam
W
27
27
Three Approaches
• Fluid dynamics +passive field
– Fluid velocity, scalar + ram pressure
• Classical Electromagnetodynamics
– Maxwell stress tensor + Poynting Flux
• Relativistic Magnetohydrodynamics
– All of the above
5 vii 2013
28
Potsdam
Let there be Light
•
•
•
•
Faraday
Maxwell
Initial Condition
Definition
B
   E
t
E
B j
t
 B 0
 E  
2 A  j

=>Maxwell Tensor, Poynting Flux
5 vii 2013

Potsdam
29
Force-Free Condition
E  j  B  0  E  B  E  j  0
(  E)E  B  (B    B  E    E)B
j
B2
• Ignore inertia of matter s =UM/UP>>G2, 1

• Electromagnetic
stress acts on
electromagnetic energy density
• Fast and intermediate wave
characteristics,
30 v 2012
Ginzburg
30
How to get Blood from a Stone

Rules of thumb:
 F ~ B R2 ; V ~ W F;

I~ V / Z0; P ~ V I
PWN
AGN
GRB
B
100 MT
1 T
1 TT
W
10 Hz
10 Hz
1 kHz
R
10 km
10 Tm
10 km
V
3 PV
300 EV
30 ZV
I
300 TA
3 EA
300 EA
P
100 XW
1 TXW
10 PXW
B M
W
Unipolar Induction
5 vii 2013
31
Potsdam
EM/RMHD power
• Relativistic Force-Free treatment
E  j  B  0  E  B  E  j  0
– No inertia
• Relativistic MHD
– Inertia
j
(  E)E  B  (B    B  E    E)B
B2
• Where do the currents close?

– EM->Heat, bulk kinetic energy
• How are jets powered?
– Disk or hole?
5 vii 2013
Potsdam
32
Force-Free Electrodynamics
in Kerr Spacetime
• F.J=0 div TEM=0
– Pair production necessary
 xf,t
– Conserved F, G
– I(F), V(F), W(F)
• Boundary conditions
– EM finite for infalling observer
• Kerr-Schild or numerical kludge
• Energy flows out at horizon in non-rotating frame
• Energy flows in at horizon in rotating frame
• Circuit analysis
5 vii 2013
Potsdam
33
Telegraphers’ Equations
5 vii 2013
Potsdam
34
On the dragging of inertial frames
• Newtonian:
– Consider a “Uranus” with S.L=0, r=const.
– Let S=(Sr,0,Sf)
– d2S/dt2=-(GM/r3)S
• Kerr metric:
–
–
–
–
Circular, equatorial orbit
S=(-WSf, Sr,0,Sf)
Parallel-propagate along geodesic
d2S/dt2=-(GM/r3)S
• Independent of a including sign!
 wBL=W-r-3/2ut-1=3r-5/2/2-ar-3+…
5 vii 2013
Potsdam
35
Dipolar or Quadrupolar?
Even field
Odd current
Odd field
Even current
W
x
.
Lovelace, Camenzind, Koide, RB
5 vii 2013
Potsdam
Also prograde vs retrograde?
36
Steady, Radiative Accretion
• Thin disk, slow inflow v, mass per radius 
Torque G, Specific angular momentum l
Angular velocity W, Energy e = -Wl/2
 v

0
 v  const
t
r

v G


0
 v  G  const
t
r
r
e  (WG  ve)
W
de

G
 S  3v
t
r
r
dr
Local energy radiated is
vii 2006
Santa Fe
3 x11the
binding energy released
G
Adiabatic Disks
• Outflows,winds, jets
remove, mass, angular
momentum, energy
• Thick disks
– Ion pressure
•
•
•
•
Dissipated energy heats ions
Poor ion-electron coupling
Cold electrons don’t radiate
Radio galaxies
– Radiation pressure
•
•
•
•
Ý 1

Thomson scattering optical depth
Photons trapped within
Advected inwards
BALQs
Ý 1

11 vii 2006
Santa Fe
•
•
•
Relativistic Jets Powered by Black
Hole Spin
Thick disks spin down hole
electromagnetically
Thin disks spin up hole through
accretion
Jet Fuel
10
Ý
M
ÝE
M
1
Width ~WM
Jet properties depend
upon mass supply rate
and history.
0.1
11 vii 2006
Santa Fe
M
Magnetically-choked Accretion Flows
• Robust, collimated jets
– >105 m
• Build up strong dipolar field
– Thick spinning disks, suppress MRI
– Not quadrupolar
• Efficient extraction of spin energy-> jets
– Prograde (not retrograde) more efficient
• Magnetic collimation
– Poorly collimated, slower winds
• QPOs,
– Helical instability (m=1) ~W/4, Q~100 (jet) ~3 (disk)
• Strong intermittency
– Acceleration
5 vii 2013
McKinney, RB;
McKinney, Tschekovskoy, RB
Tschevoskoy et al
Potsdam
40
5 vii 2013
Potsdam
41
Magnetically-choked Accretion Flows
• Robust, collimated jets
– >105 m
• Build up strong dipolar field
– Thick spinning disks, suppress MRI
– Not quadrupolar
• Efficient extraction of spin energy-> jets
– Prograde (not retrograde) more efficient
• Magnetic collimation
– Poorly collimated, slower winds
• QPOs,
– Helical instability (m=1) ~W/4, Q~100 (jet) ~3 (disk)
• Strong intermittency
– Acceleration
5 vii 2013
McKinney, RB;
McKinney, Tschekovskoy, RB
Tschevoskoy et al
Potsdam
42
5 vii 2013
Potsdam
43
SKA and CTA
5 vii 2013
Potsdam
44
LIGO, LISA, Nanograv…
RIP
• Merging Black
Holes
– Ultimate test of
dynamical, strong
General Relativity
– Orbit, plunge…
– Background
• Millisecond pulsar
array
5 vii 2013
Potsdam
– Fermi + radio (44)
45
– 40 ns timing accuracy
Faraday Rotation
Simulation
Observation
Zavala& Taylor 2005
Broderick & McKinney
Signature of toroidal field/axial current
5 vii 2013
Potsdam
46
Imaging a Black Hole?
• For M87 and Galactic Center,
– 2m ~10as ~ 0.3 mm/RE
• Event Horizon Telescope (Doeleman et al)
– ALMA VLBI
Dexter, McKinney, Agol
ALMA
5 vii 2013
Potsdam
47
Summary
•
•
•
•
•
•
•
•
Black Holes common in Galaxy, AGN, GRB
Masses and spins can be high
Multi-l observations of large jet samples
Large Lorentz factors inferred.
3D RMHD simulations now very powerful
Kerr holes probably power ultrarelativistic jets
Magnetic->Leptonic->Hadronic transitions
Provide ingredients for extreme acceleration
5 vii 2013
Potsdam
48