Mass Spectrometry Frequently Asked Questions Dr. Markus Wunderlin, Seminar 07.07.2004 Overview Mass Spectrometry in a Nutshell - Facts and Basics Mass Resolution and Mass.

Download Report

Transcript Mass Spectrometry Frequently Asked Questions Dr. Markus Wunderlin, Seminar 07.07.2004 Overview Mass Spectrometry in a Nutshell - Facts and Basics Mass Resolution and Mass.

Mass Spectrometry Frequently Asked Questions

Dr. Markus Wunderlin, Seminar 07.07.2004

Overview

 Mass Spectrometry in a Nutshell - Facts and Basics  Mass Resolution and Mass Accuracy  Fragmentation – Dissozation – Adduct Formation  Impurities - Contamination - Artefacts  FTICR-MS: The „Ferrari Age“ Of MS

Facts and Basics Mass Spectrometry

A technique for measuring and analyzing molecules, that involves introducing enough energy into a (neutral) target molecule to cause its ionization and disintegration. The resulting primary ions and their fragments are then analyzed, based on their mass/ charge ratios, to produce a "molecular fingerprint."

Facts and Basics Difference Between Spectrometric Methods:

Ionization implies a chemical process induced by physical methods. The sample is consumed during the measurement. Their is no defined stimulation of molecular energy levels through interaction with electromagentic radiation, where you can get the sample back without modification.

Structural Information by MS

MW determination  nominal  accurate (elemental composition)  Isotope pattern  High resolution Fragmentation  Fragmentation rules  Libraries („fitting“)  MS/MS (or MS n )

Components Of A Mass Spectrometer

Ionisation Ion Source

Electron Ionisation (EI) Chemical Ionisation (CI) Fast Atom Bombardment (FAB) Electrospray Ionisation (ESI) Matrix-Assisted Laserdesorption/ Ionisation (MALDI)

Ion Separation Mass Analyser

Quadrupole Magnetic Sector Field Electric Sector Field Time-Of-Flight (TOF) Ion Trap

Ion Detection Detector

Electron Multiplier Multichannel plate Faraday Cup

Sektion MS: Mass Spectrometers

Bruker Reflex III Finnigan SSQ7000 Finnigan TSQ700 Finnigan TSQ7000 EI CI ESI APCI MALDI FAB MS/MS

+ PSD + + (+) (+) (+) + + + +

Inlet

GC, SP, DEP GC, SP, DEP Nano-ESI

Status

Homepage „Sektion Massenspektrometrie“ http://www.uni-ulm.de/uni/fak/natwis/oc2/massenspektrometrie/index.htm

FTP-Server for data collection (MALDI, EI, CI, FAB) like the NMR-service Server: 134.60.63.96

Username:OC2 PW:Maldi

MS Software

Software for MALDI data analysis Bruker Data Analysis 1.6d

Software for EI, CI and FAB data analysis ACD Labs MS Processor

What type of analysis is needed ?

Ionization methods: MALDI, EI, CI, (FAB), (ESI) • • – I will select the ionization method unless you have previous success with a method duplicating literature methods - Analyses are low resolution • confirms presence of analyte • for high mass compounds (m/w >10000) I try to obtain the best resolution possible • for high mass accuracy internal calibration (standard: external calibration)

What type of analysis is needed ?

Which MS method is best for the compound I want to analyze ?

 Molecular weigth?

 Solvent & solubility?

 Purity?

 Reactivity?

 Would it distill or sublime under HiVac ?  One compound or mixture?

 Acidic? Basic?

 Ionic?

Ionization Methods

Neutral species

Charged species

• Removal/addition of electron(s) – M + e  (M +.

)* + 2e • electron ionization • Removal/addition of proton(s) – M + (Matrix)-H  MH + + (Matrix) • chemical ionization (CI) • atmospheric pressure CI (APCI) • fast atom bombardment (FAB) • electrospray ionization (ESI) • matrix assisted laser desorption/ionization (MALDI)

Matrix Assisted Laser Desorption

Matrix Assisted Laser Desorption

TOF Parameters Simple, cheap (in theory), robust, sensitive.

A good modern TOF should give: 􀂾 >10k Resolving power 􀂾 ~1-10 fmol sensitivity (single scan) 􀂾 ~10 ppm mass accuracy internally calibrated (5 ppm if the peak is particularly large or clean).

􀂾 >1000 scans/second 􀂾Unlimited mass range

Matrices

Matrix

1,8,9-Trihydroxyanthracen (Dithranol) OH OH OH 2,5-Dihydroxybenzoic acid (DHB)  -Cyano-4-hydroxycinnamic acid COOH OH H O N C C CH COOH OH OH 4-Hydroxypicolinic acid N COOH COOH Trans-Indol-3-acrylacid (IAA) N H polymers proteins, peptides, polymers peptides, (polymers) oligonucleotides polymers

Sample Preparation: Dried Droplet

solved Matrix Mixing and Drying solved sample

Sample Preparation: Thin Layer

solved Matrix fast drying thin homogenuous layer of crytslas solved sample Drying

Guide to Sample Preparation

Reflector

 Through ionisation there is an activation energy distribution (energy-, position- and time uncertainty, electronic repulsion energy, shielding effects)  Electric field after the field free drift region that reverses the direction of travel of the ion (reflects)  Ions with same m/z ratio but higher kinetic energy penetrate deeper into the reflector, delaying their time of arrival at the reflector relative to the slower low-energy ions  Improved resolution, increase in mass accuracy

Principle Of Reflector-TOF

acceleration region detector 2 1 1 2 sample target Field free drift region 1 2 1 2 1 2 reflector m/z

Electrospray (ESI)

Mass Analyzer: Quadrupole (Q)

Four parallel rods or poles through which the ions being separated are passed.

Poles have a fixed DC and alternating RF voltages applied to them.

  Depending on the produced electric field, only ions of a particular m/z will be focused on the detector, all the other ions will be deflected into the rods.

Scanning by varying the amplitude of the voltages (AC/DC constant)

Resolution

    Ability of a mass spectrometer to distinguish between ions of different m/z ratios.

R=m/Δm

Δm is the mass difference between two adjacent peaks that are just resolved m is the mass of the first peak (or the mean mass of two peaks) although this definition is for two peaks, it is acceptable to measure the resolution from a single peak (MALDI-TOF). In that case Δm is the width of the peak at half

maxima (FWHM) of the peak corresponding to m.

Resolution

If we have 5000 resolution on a mass spectrometer, we can separate m/z 50.000 from m/z 50.010, or separate m/z 100.000 from m/z 100.020, or separate m/z 1000.000 from m/z 1000.200 (all down to a 10% valley between the two peaks).

Mass Spectra of Cyclothiophen

3000 Cyclo[12]thiophen 2500 1657.6

2000 1500 1000 S S S S S S S S S S S S 1656.6

1657.6

1658.6

1659.6

1660.6

1661.6

1654 1656 1658 1660 1662 1664 500 0 1300 1400 1500 1600 m/z 1700 1800 1900 2000

Mass Spectra of Angiotensin

1047.56 (average) 1046.20 (monoisotopic)

linear DE Reflektor

1040 1045 m/z 1050 1055

„Masses“

  

Average Mass

The sum of the average of the isotopic masses of the atoms in a molecule, e.g. C = 12.01115, H = 1.00797, O = 15.9994.

Monoisotopic Mass

The sum of the exact or accurate masses of the lightest stable isotope of the atoms in a molecule, e.g. C = 12.000000, H = 1.007825, O = 15.994915.

Nominal Mass:

The integral sum of the nucleons in an atom (also called the atomic mass number), e.g. C = 12, H = 1, O = 16.

Mass spectra of Angiotensin I

I 100 90 40 30 20 10 80 70 60 50

average mass 1297.50248

1.294

1.296

1.298

Mass (m/z) 1.300

R = 1000

1.302

1.304

.

I 100 90 80 70 60 50 40 30 20 10 0 1.294

monoisotopic mass 1296.68518

12 12 12 12 C 62 H 90 N 17 O 14 C 61 13 C 1 H 90 N 17 O 14 C 60 13 C 2 H 90 N 17 C 59 13 C 3 H 90 N 17 1.296

1.298

Mass (m/z) 1.300

1.302

1.304

O O 14 14

R = 5000

Simulated Spectra of Bovine Insulin

resolution : 4000

100 90 80 70 60 50 40 30 20 10 0 5.720

5.725

5.730

5.735

5.740

5.745

100 90 80 70 60 50 40 30 20 10 0 5.720

5.725

resolution 12000

5.730

5.735

5.740

5.745

100 90 80 70 60 50 40 30 20 10 0 5.720

100 90 80 70 60 50 40 30 20 10 0 5.720

5.725

5.730

resolution : 30000

5.735

5.740

5.745

resolution : 500.0000

5.725

5.730

5.735

5.740

5.745

Instrument Resolution and Mass Accuracy

Instrument Mass Range m/z GC/MS (Quadrupole) Sector MALDI/TOF FTICR To 2000 Resolution (at m/z 1000) Low Resolution Accuracy (Error) (at m/z 1000) To 4000 50000-100000 0.0005% (5 ppm) To 400000 15000 (Reflectron) 0.006% (60 ppm) ext. Cal.

0.003% (30 ppm) int. Cal.

To 4000 To 3000000 0.0001% (1 ppm) (Theoretical MW -Measured MW) ppm = X 10 Theoretical MW

Calibration

•Instrument calibration performed well before sample analysis: – EI/CI, GC-MS – FAB – ESI • Performed immediately before sample analysis: – MALDI-TOF

Calibration

Compounds used for calibration include: – PEG, PBM, peptides, proteins, PFTBA, CsI

External Calibration

.

Internal Calibration

: m/z scale is calibrated with a mixture of molecules with different molecular weights; after that the analyte is measured.

: Analyte and a mixture of molecules with different molecular weigths are mixed and measured together. Then the spectrum is calibrated by assigning the right masses to the well known calibration standards (perfect: mass of analyte is between the mass of two standards ).

Fragmentation – Dissozation – Adduct Formation Comparison of Ionization Methods EI Additional mass due to Positive Ionisation Loss of mass due to negative ionisation Number of charges added Matrix peaks?

No 1 No

CI

Yes No 1 No

ESI

H, Na, K etc.

(+1, +23, +39 etc.) Loss of H(-1)

MALDI

H, Na, K etc.

(+1, +23, +39 etc.) Loss of H(-1)

FAB

H, Na, K etc.

(+1, +23, +39 etc.) Loss of H(-1) 1-many (dependent upon mass) Yes 1-2 Yes 1-2 No

Fragmentation – Dissozation – Adduct Formation Singly-, doubly-, triply-, etc. charged ion

Molecule or molecular moiety which has gained or lost respectively one, two, three or more electrons/protons.

Cytochrom C MALDI ESI Dimeric ion

Ion formed when a chemical species exists in the vapour as a dimer and can be detected as such, or when a molecular ion can attach to a neutral molecule within the ion source  e.g. [2M+H] +

Fragmentation – Dissozation – Adduct Formation Adduct ions

An ion formed by interaction of two species, usually an ion and a molecule, and often within an ion source, to form an ion containing all the constituent atoms of one species as well as an additional atom.

a.i.

4000

[M+ Na ] +

674 3500 OH O 2 O 3000 2500 2000

[M+ H] +

652 N

[M+ K] +

690

C 40 H 46 N 2 O 6

1500 1000 500 640 660 680 700 m/z

Fragmentation – Dissozation – Adduct Formation Cluster ion

An ion formed by the combination of two or more atoms, ions or molecules of a chemical species, often in association with a second species.

[2M-H] -

183.1

X 10

Negative-ion FAB of matrix glycerol [3M-H] -

275.2

367.2

459.2

551.3

[7M-H] -

643.3

827.4

919.4

Fragmentation – Dissozation – Adduct Formation Fragment ion

An electrically charged dissociation product of an ionic fragmentation. Such an ion may fragmentate further to produce other electrically charged molecular or atomic moieties of successively lower formula weight.

Fragmentation Dissociation

  Break Of Covalent Bond Break of Non-covalent complex

„Hard“ Ionisation „Soft“ Ionisation EI CI MALDI,FAB ESI

Fragmentation – Dissozation – Adduct Formation Fragment ion

An electrically charged dissociation product of an ionic fragmentation. Such an ion may fragmentate further to produce other electrically charged molecular or atomic moieties of successively lower formula weight.

Fragmentation Dissociation

  Break Of Covalent Bond Break of Non-covalent complex

„Hard“ Ionisation „Soft“ Ionisation EI CI MALDI,FAB ESI

Fragmentation – Dissozation – Adduct Formation New Software: ACD/MS Fragmenter

 predicting of possible schemes of mass spectral fragmentation for chemical structures  Selection fragmentation-rule parameters to mimic different ionization techniques that range from EI to low energy protonation techniques such as ESI or APCI  Recognition of fragments within an aquired mass spectra

Fragmentation – Dissozation – Adduct Formation

100 80 60 40

CuL + R R Bu Bu S S Bu Bu S S Bu Bu S S N N N Cu + N Bu Bu Bu Bu CuL 2 + S Bu S Bu R = TMS, H

100

S S Bu S Bu S Bu Bu R R BF 4 -

80 60 40

CuL + CuL 2 +

20 0 1000 1250 1500 1750 2000 2250 2500 m/z TMS-protected complex 2750 20

(Ac3T) 2 phen

3000 0 1000 1250 1500 1750 2000 m/z 2250 2500 deprotected complex 2750 3000

a.i.

11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

Fragmentation – Dissozation – Adduct Formation

N N 654.6

N O

Ni

O N 810.9

600 700 800 m/z

Impurities - Contamination - Artefacts

Impurity

e.g. antioxidantia in organic solvents, side products not separated after synthesis, additional components after insufficient isolation from biological material 

Contamination

Compound which was putinto the sample subsequently, e.g. through chromatographic column  CH

Artefact

MS-specific „key ions“, e.g. CI with CH4 as ionisation gas: 4 + e  CH 4 +• (formation of primary ion) CH 4 +• CH 3 +  CH 3 + + CH 4  + H • C 2 H 5 + + H 2 formation of adducts with m/z +28

Impurities - Contamination - Artefacts

Contamination Source Alkali salts Heavy metal salts Alkyl(benzol)sul fonate Alkylammounium salts HC Polyphenylether Longchain carbonic acids Siloxane

Solvents, glas etc.

Sample vessels, HPLC pumps Columns, IE, detergents Columns, IE, detergents Grease Grease, pump oil Chromatographic columns Silicon grease, DC plate, plastic

EI, CI

+ + ++ ++

Detection FAB

++

MALDI, ESI

++/++ ++ +/+ ++ ++ + + + + -/+ ++/++ +/+ +/+ (+)/(+) -/(+)

General Sample Handling

Mass spectrometry is a sensitive technique (for impurities and contamination, too!)   

Sample Storage

– Glass vials can leach salts (Na/K) into sample – Ideal storage vial is siliconized polypropylene tubes Use Freshly prepared, high purity reagents and water Omit high concentrations of buffer salts ( NaCl, KH 2 PO 4 !!!), Detergents (Tween, Triton, SDS) Urea, guanidine salts    Cleaning of the sample: dialysis, RP-HPLC, Zip-Tips, ion exchange Use of removable buffer salts (z.B. NH4Ac) Use of removable solvents like water, acetonitrile, methanol

General Sample Handling

  Use Freshly prepared, high purity reagents and water Omit high concentrations of buffer salts ( NaCl, KH 2 PO 4 !!!), Detergents (Tween, Triton, SDS) Urea, guanidine salts  Cleaning of the sample: dialysis, RP-HPLC, Zip-Tips, ion exchange   Use of removable buffer salts (z.B. NH4Ac) Use of removable solvents like water, acetonitrile, methanol

Mass Spectra of Synthetic Polymers

Information:  monomer unit    end group average masses Mn =  (NiMi) / Mi Mw =  (NiMi2) / (NiMi) polydispersity D = Mw/Mn Problems: Synthetic polymers are polydisperse  bad signal-noise-ratio  Polymers without ionisationable functional groups  „mass discrimination“/detector sättigung at D > 1.1

metal ion add-on z.B. Polystyrol  Ag+; PEG  Na+, K+ etc.

Intens.

6000 O CH 3 [ O CH 3 [ O CH -O-C-CH -CH-C-CH -CH-C-O-CH 3 n Linear Mode 4000 2000 Reflektor Mode 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 m/z

Mass Spectra of Synthetic Polymers

1023 979 1067 1111 1155 1199 935 1243 + CH-(CHO)-OH+Na 15 + 44x+17 +23

New aspects in mass spectrometry: Hybrid Mass Spectrometers

Perhaps hundreds of hybrids have been explored.

Some of the more successful: Triple quadrupole IT-TOF Q-TOF Quadrupole-FTMS TOF/TOF

New aspects in mass spectrometry: FT-ICR-MS

FT-ICR-MS instrument general scheme

Fouriertransform-ICR: New Dimensions of High Performance Mass Spectrometry

    A high-frequency mass spectrometer in which the cyclotron motion of ions, having different m/z ratios, in a constant magnetic field, is excited essentially simultaneously and coherently by a pulse of a radio frequency electric field applied perpendicularly to the magnetic field. The excited cyclotron motion of the ions is subsequently detected on receiver plates as a time domain signal that contains all the cyclotron frequencies excited. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and m/z ratio, can be converted to a mass spectrum.

The ions are to be detected, with a selected m/z ratio, absorb maximum energy through the effect of a high-frequency field and a constant magnetic field perpendicular to it. Maximum energy is gained by ions that satisfy the cyclotron resonance condition and as a result these are separated from ions of different mass/charge.

FTICR: New Dimensions of High Performance Mass Spectrometry

High mass resolution Accuracy of mass determination > 3 000 000 < 0.1 ppm Sensitivity (ESI, Octapeptide) ca. 50 attomol Structure-specific fragmentation MS/MS , MS n

FTICR: New Dimensions of High Performance Mass Spectrometry

Ions are trapped and oscillate with low, incoherent, thermal amplitude Excitation sweeps resonant ions into a large, coherent cyclotron orbit Preamplifier and digitizer pick up the induced potentials on the cell.

FTICR: New Dimensions of High Performance Mass Spectrometry

The frequency of the cyclotron gyration of an ion is inversely proportional to its mass-to-charge ratio (m/q) and directly proportional to the strength of the applied magnetic field B.

FTICR: New Dimensions of High Performance Mass Spectrometry

FTICR: New Dimensions of High Performance Mass Spectrometry

In the presence of a magnetic field, sample ions orbit according to cyclotron frequency, fc • Cyclotron frequency related to charge of ion (z), magnetic field strength (B) and mass of ion (m).

All ions of same m/z will have same cyclotron frequency at a fixed B and will move in a coherent ion packet.

FTICR: New Dimensions of High Performance Mass Spectrometry

Ion packets produce a detectable image current on the detector cell plates.

As the ion(s) in a circular orbit approach the top plate, electrons are attracted to this plate from ground. Then as the ion(s) circulate towards the bottom plate, the electrons travel back down to the bottom plate. This motion of electrons moving back and forth between the two plates produces a detectable current.

FTICR: New Dimensions of High Performance Mass Spectrometry

Image is Fourier transformed to obtain the component frequencies and amplitudes (intensity) of the various ions.

Cyclotron frequency value is converted into a m/z value to produce mass spectrum with the appropriate intensities.

1. CsF / THF / MeOH 2. Pt(dppp)Cl 2 / CuI Et 3 N / toluene / DCM Bu Ph Ph PH H Pt P Ph Ph Bu Bu S S Bu S S Bu Bu Bu S Bu S N N

Cu +

N H 2 N Bu Bu [44%] S Bu S S Bu S I 2 / THF Bu Bu Bu S S Bu S S Bu Bu Bu S Bu S N N

Cu +

N H 2 N Bu Bu [?] BF 4 S S Bu

FTICR: New Dimensions of High

Ph Ph

Performance Mass Spectrometry

H P Ph Ph Bu Bu S Bu S Bu S S S Bu Bu S Bu Bu BF 4 -

The End