Matematik i biologi og farmaceutisk industri. Årskursus i matematik, kemi og fysik, Rosborg Gymnasium, Vejle, 24/10, 2008 Mads Peter Sørensen DTU Matematik, Kgs.
Download ReportTranscript Matematik i biologi og farmaceutisk industri. Årskursus i matematik, kemi og fysik, Rosborg Gymnasium, Vejle, 24/10, 2008 Mads Peter Sørensen DTU Matematik, Kgs.
Matematik i biologi og farmaceutisk industri. Årskursus i matematik, kemi og fysik, Rosborg Gymnasium, Vejle, 24/10, 2008 Mads Peter Sørensen DTU Matematik, Kgs. Lyngby Indhold: 1) Udvikling af medicin og matematisk modellering. 2) Blodkoagulation. 3) Insulinproducerende beta celler. 4) Sammenfatning. Samarbejdspartnere. 1) Nina Marianne Andersen, DTU Matematik og Novo Nordisk 2) Steen Ingwersen, Biomodellering, Novo Nordisk. 3) Ole Hvilsted Olsen, Hæmostasis biokemi, Novo Nordisk. 4) Morten Gram Pedersen, Department of Information Engineering, University of Padova, Italy. 5) Oleg V. Aslanidi, Institute of Cell Biophysics RAS, Pushchino, Moscow, Russia. 6) Oleg A. Mornev, Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow, Russia. 7) Ole Skyggebjerg, Novo Nordisk. 8) Per Arkhammar og Ole Thastrup, BioImage a/s, Søborg. 9) Alwyn C. Scott, DTU Informatik og University of Arizona, Tucson AZ, USA. 10) Peter L. Christiansen, DTU Fysik og DTU Informatik. 11) Knut Conradsen, DTU Informatik Sponsorer: Modelling, Estimation and Control of Biotechnological Systems (MECOBS). EU Network of Excellence BioSim. Udviklingsomkostninger for ny medicin. Ref.: Erik Mosekilde, Ingeniøren 10. oktober, side 9, (2008). EU Network of Excellence BioSim. http://biosim-network.eu Udviklingsprocessen for ny medicin. 1) Opdagelse. 2) Prækliniske forsøg. Ide, hypotese, forskning. Udviklingsfase. Dyreforsøg. Dyremodeller. Dyreforsøg. Protokol for sikkerhed og effektivitet. Mekanisme og potentiel giftpåvirkning af organer. 4) Godkendelse. 3) Kliniske forsøg. Godkendelse fra regulerende myndigheder. Test på mennesker. Test for sikkerhed og effektivitet. Regulerende myndigheder. Godkendelse af medikamentet. Marketing autorisation. Sikker og effektiv medicin. >50% af udviklings tiden. 1 ud af 10-15 medikamenter overlever til fase 3 5) Kontrol. Lægemiddelovervågning Matematisk modellering som et redskab i udviklingen af ny medicin Udviklingsomkostningerne for et nyt medikament ligger typisk mellem 1 og 7 milliarder kr. Udviklingstid: 10 – 15 år. Anvendelse af moderne modellerings og computer simuleringsværktøjer til udvikling af ny medicin. Kompleksitet. Mere rationel og hurtigere udviklings proces med færre økonomiske omkostninger. Forbedret behandling af patienter. Bedre, mere sikker og mere individuel behandling. Reduktion i anvendelse af dyre eksperimenter. Computer model af menneske. Disorders of Coagulation Hypocoagulation: Hypercoagulation: Hemophilia A Cardiovascular diseases: Hemophilia B Arthroscleroses Others Emboli and thrombi development Cartoon of the blood coagulation pathway. Ref: http://www.ambion.com/tool s/pathway/pathway.php?pat hway=Blood%20Coagulation %20Cascade Perfusions eksperiment og modellering Perfusions kammer Aktive thrombocyter (Ta) binder til et collagen coated låg. vWF. Glaslåg coated med collagen Faktor X i fluid fase X Thrombocyter (blodplader), røde og hvide blod celler. Faktor VIIa I fluid fase Rekonstrueret blod. VIIa Indhold: Thrombocyter (T), Erythrocyter. [T] = 14 nM (70,000 blodplader / μ litre blood) Enzym kinetic k1 Reaktions skema: k2 SE C EP k 1 Reaktions ligningerne: ds k 1c k1se dt dc k1se (k 1 k 2 )c dt Bemærk at: e c e0 de (k 1 k 2 )c k1se dt dp k2c dt Enzym kinetic Skalering: s s0 Matematisk model: c x e0 k1 k2 k1s0 e0 s0 k1 k1s0 d x( ) d dx x( ) d Kvasistationær tilstand: x /( ) d ( ) d Ref.: J. Keener and J. Sneyd, Mathematical Physiology, Springer, New York, (1998). M.G. Pedersen, A.M. Bersani and E. Bersani, Jour. of Math. Chem. 43(4), pp1318-1344, (2008). Konkurrerende inhibitor (hæmningsstof) k1 Reaktions skema: k2 S E C1 E P k 1 k3 E I C2 k 3 Inklusion af flow og diffusion: s Ds s (v s ) k 1c1 k1se t Diffusionskonstant: Ds Reaktionsskema ved rand: k4 PB BP k 4 Konvektions flow hastighed: Bindingssites på rand: B B BP B0 db k 4bp k 4 (b0 b) dt v To dimensionalt eksempel med flow, diffusion og bindingssites på randen P y x Bindingssites på randen: Cartoon model of the perfusion experiment Unactivated Platelet Activated Platelet IIa II IIa IIa VIIa X Xa V Activated Platelet Va Va:Xa Reaction schemes, one example. II Ta II Ta Ta10 Factor II (prothrombin): II F 10 Factor IIa (thrombin): IIa R16 II Ta XaTa XaTa IIa Prothrombinase complex: Xa_Va_Ta S3 II Ta XaVaTa XaVaTa IIa A total of 17 equations. dII Ta R16 XaTa II Ta S 3 XaVaTa II Ta dt Ta10 II Ta F10 II Ta R16 7500 M 1s 1 Reaction rates: 1 1 S 3 10 M s 7 F 10 1s 1 Ta10 43000 M 1 1 s Ref: P.M. Didriksen, Modelling hemostasis - a biosimulation project, internal report, Dept. 252 Biomodelling, Novo Nordisk Numerical results. Initial conditions: FVIIa = 50 nM FX = 170 nM T = 14 nM sTa = 0.1*14 nM FII = 0.3 nM IIa T VIIa Ta Reaction diffusion model with convection Reaction scheme for T, Ta and IIa. T6 T7 T IIa sTa Ta IIa Corresponding model equations in the space Ω. dT T6 T IIa DT 2T (v( y ) T ) dt dIIa T7 sTa T6 T IIa DIIa 2 IIa (v( y ) IIa) dt dsTa T6 T IIa T7 Ta IIa DsTa 2 sTa (v( y ) sTa ) dt dTa T7 sTa DTa 2Ta (v( y ) Ta) dt Poiseuille’s flow v( y) ay(1 y / H ) Boundary conditions and parameters Boundary condition x=0 IIa 1.2 106 nM f1 ( y ) T 14 109 nM f 2 ( y ) Ta 0 sTa 0 Boundary condition x=l: Outflow boundary conditions. Top and bottom boundary condition: No flow crossing. Ref.: M. Anand, K. Rajagopal, K.R. Rajagopal. A Model Incorporating some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood. Journal of Theoretical Medicine, 5: 183-218, 2003. Numerical results. T T-IIa IIa Ta Time = 0.6 sec. Numerical results. T IIa T-IIa Ta Time = 5 sec. Numerical results. T T-IIa IIa Ta Time = 10 sec. Future work: Boundary attachment of Ta Reaction schemes on k2 Ta TaB k3 T TaB k5 k4 II TaB C2 TaB IIa Corresponding model equations on. dII dIIa k 4 II TaB k5 C2 dt dt dTaB k 2 Ta k 4 II TaB k5 C2 k3 T dt dC2 k 4 II TaB k5 C2 dt Including pro-coagulant and anti-coagulant thrombin Ref.: V.I. Zarnitsina et al, Dynamics of spatially nonuniform patterning in the model of blood coagulation, Chaos 11(1), pp57-70, 2001. E.A. Ermakova et al, Blood coagulation and propagation of autowaves in flow, Pathophysiology og Haemostasis and Thrombosis, 34, pp135-142, 2005. Model consisting of 11 PDEs in 2+1 D, including diffusion Sammenfatning og fremtidig arbejde 1. Modellering af perfusionseksperiment for blodkoagulation. 2. Reduceret PDL model, som inkludere blod flow og diffusion. 3. Modellering af vedhæftning af aktive thrombocyter på collagen coated rand. 4. Fuld PDL model. 5. Model af in vivo blod koagulation. Synthesis and secretion of insulin Pre-proinsulin Transcription Insulin Golgi complex packed in granules Proinsulin Endoplasmatic reticulum B Exocytosis of insulin caused by increased Ca concentration The β-cell Ion channel gates for Ca and K B Mathematical model for single cell dynamics The modified Hodgkin-Huxley model for a single β-cell C dv I Ca I K I s I K ( ATP ) I K ( Ca ) I CRAC dt Ion currents due to the ion-gates I Ca g Ca m (v(t ) vCa ) I s g s s (t )(v(t ) vs ) I K g K n(t )(v(t ) vK ) I K ( ATP ) g K ( ATP ) (v(t ) vK ) Ref.: A. Sherman, (Eds. Othmar et al), Case studies in mathematical modelling, ecology physiology and cell biology, Prentice Hall (1996), pp.199-217. Ref.: Fall, Marland, Wagner, Tyson, Computational Cell Biology, Springer, (2002). Mathematical model for single cell dynamics The gating variables dn n n(t ) dt n 1 x vx v 1 exp sx ds s s(t ) dt s k C O k Ref.: Fall, Marland, Wagner, Tyson, Computational Cell Biology, Springer, (2002). Ref.: Fall, Marland, Wagner, Tyson, Computational Cell Biology, Springer, (2002). Dynamics and bifurcations Ref.: E.M. Izhikevich, Neural excitability spiking and bursting, Int. Jour. of Bifurcation and Chaos, p1171 (2000). Dynamics and bifurcations Simple polynomial model dx y x 3 3x 2 I z dt dy 1 5x 2 y dt dz r s ( x x1 ) z dt Parameters x1 (1 5) / 2 r 0.001 s4 Ref.: J. Keener and J. Sneyd, Mathematical Physiology, Springer, New York, (1998). Sketch of the homoclinic bifurcation z z cr z z cr z z cr Mathematical model for single cell dynamics Topologically equivalent and simplified models. Polynomial model with Gaussian noise term on the gating variable. du f (u ) w z dt dw g (u ) w (t ) dt Voltage across the cell membrane: Gating variable: w w(t ) Gaussian gate noise term: (t ) dz (h(u ) z ) dt u u(t ) Slow gate variable: where z z (t ) (t ) 0 (t )(0) (t ) Ref.: M. Panarowski, SIAM J. Appl. Math., 54 pp.814-832, (1994). Ref.: A. Sherman, (Eds. Othmar et al), Case studies in mathematical modelling, ecology physiology and cell biology, Prentice Hall (1996), pp.199-217. The influence of noise on the beta-cell bursting phenomenon. 0 0 .1 0 .3 Ref.: M.G. Pedersen and M.P. Sørensen, SIAM J. Appl. Math., 67(2), pp.530-542, (2007). Mathematical model for coupled β-cells Gap junctions between neighbouring cells Coupling to nearest neighbours. Coupling constant: g ij dvi C I Ca I K I s I K ( ATP ) g ij (vi v j ) dt j Ref.: A. Sherman, (Eds. Othmar et al), Case studies in mathematical modelling, ecology physiology and cell biology, Prentice Hall (1996), pp.199-217. Coupled β-cells Image analysis experiments of in vitro islets of Langerhans Experiments on Islets of Langerhans g ij The gating variables Calcium current: I Ca g Ca m (vi )(vi vCa ) Potassium current: I K g K n(t )(vi vK ) ATP regulated potassium current: I K ( ATP ) g K ( ATP ) (vi vK ) I s g s s (t )(vi vK ) Slow ion current: The gating variables obey. dn n (v) n dt n ds s (v) s dt s x m, n, s 1 x x (vi ) 1 exp( (vi vx ) / sx ) Glycose gradients through Islets of Langerhans Ref.: J.V. Rocheleau, et al, Microfluidic glycose stimulations … , PNAS, vol 101 (35), p12899 (2004). Glycose gradients through Islets of Langerhans. Model. Continuous spiking for: Bursting for: Silence for: Coupling constant: Note that i 43 g K ( ATP ) 90 pS 90 pS g K ( ATP ) 162 pS 162 pS g K ( ATP ) g K ( ATP ) 120 pS (i 1) 1 pS corresponds to g K ( ATP ) 162 pS i 1,2,..., N Wave blocking Units t phys kt t kt c / g Ca 5.3ms ku sm 12mV u phys ku u Glycose gradients through Islets of Langerhans g ij 50 pS PDE model. Fisher’s equation Continuum limit of dvi F (vi , si ) g c (vi 1 2vi vi 1 ) dt ut f (u; a ) u xx Is approximated by the Fisher’s equation where Simple kink solution f (u; a) u(u a)(1 u) 1 u 0 ( x, t ) x x0 vt 1 exp 2 Velocity: v (1 2a ) / 2 Ref.: O.V. Aslanidi et.al. Biophys. Jour. 80, pp 1195-1209, (2001). Numerical simulations and comparison to analytic result Sammenfatning 1) Støj på ion porte reducerer burst perioden. 2) Blokering af bølgeudbredelse ved rumlig variation af den ATP regulerende Na ion kanal. 3) Koblingen mellem beta celler fører til en forøget excitation af ellers inaktive celler. Ref.: M.G. Pedersen and M.P. Sørensen, SIAM J. Appl. Math., 67(2), pp.530-542, (2007). M.G. Pedersen and M.P. Sørensen, To appear in Jour. of Bio. Phys. Special issue on Complexity in Neurology and Psychiatry, (2008). 1) Bio-kemiske processer er meget komplekse og kræver omfattende modellering. 2) Simple og overskuelige modeller kan give kvalitativ indsigt. 3) Der er lang vej til pålidelige kvantitative modeller. 4) Matematiske modeller forventes dog at kunne bidrage til hurtigere og mere sikker udvikling af medicin med færre dyreforsøg. Studieretningsprojekter for gymnasiet Se: http://www.dtu.dk/Moed_DTU/Studieretningsprojekter.aspx