The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un.
Download
Report
Transcript The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un.
The IPCC AR4 Experiment II: Air pollution and climate change in 2030
The team:
Frank Dentener, JRC
emissions, deposition, organisation.
David Stevenson, Un. Edinburgh
ozone budgets, climate change, organisation
H. Eskes, KNMI
NO2 columns
Kjerstin Ellingsen, Un. Oslo:
surface ozone+data handling, web-site
+ ca. 20 participating groups from Europe, US, and Japan.
JRC- Brussels- PF
JRC Brussels
1
Model
Institute
Contact,
e-mail addresses
Domain / resolution
Underlying GCM/ Meteorology
Advection scheme
Convection scheme
IASB
IASB/Belgium
J.-F. Müller
[email protected]
5 x 5
25 levels
sfc – 50 hPa
monthly means from ECMWF
reanalyses
(1993-2001 ERA40)
semi-Lagrangian
[Smolarkiewicz and Rasch,
1991]
described in Costen et al. [1998];
cumulo-nimbus distrbution taken from
ISCCP
KNMI
KNMI / IMAU
Utrecht
Twan van Noije
Peter van Velthoven
2lat x 3lon
25 levels
sfc – 0.48 hPa
ECMWF 6-h operational forecasts
(2000)
Slopes scheme [Russel and
Lerner, 1981]
mass flux scheme of Tiedtke [1989]
ECMWF 3-6-h operational forecasts
(2000)
Slopes scheme [Russel and
Lerner, 1981]
mass flux scheme of Tiedtke [1989]
TM5
JRC
[email protected]
[email protected]
1lat x 1lon
zoom over Europe, N.
America, and Asia,
other wise 6x4
25 levels
sfc – 0.48 hPa
MATCHMPIC
Max Planck Institute for
Chemistry / NCAR
Tim.butler@
5.6 x 5.6
28 levels
sfc – 2 hPa
NCEP/NCAR Reanalysis and
ECMWF Reanalysis
SPITFIRE [Rasch and
Lawrence, 1998]
Zhang and McFarlane [1995] for deep
convection; Hack [1994] for shallow
convection
UIO2
University of Oslo
Michael Gauss
[email protected]
2.8x2.8
40 levels
sfc – 10 hPa
ECMWF
forecast data
Second Order Moments
[Prather, 1986]
mass flux scheme of Tiedke [1989]
LMDz/
INCA
LSCE
GCM (or nudged to
ECMWF/ERA15-ERA40-OD)
Finite Volume second order
(Van Leer, 1977)
mass flux scheme of Tiedke [1989]
3.75 x 2.5
20 levels
sfc – 40km
GCM
(HadGEM)
Lagrangian
Described in Collins et al. [2002]
STOCHEMHadGEM
GEOSCHEM
CHASER
MOCAGE
FRSGC_UCI
ULAQ
GMIDAO
JRC Brussels
GMICCM
Didier Hauglustaine ([email protected])
Sophie Szopa ([email protected])
1.lon x
2.5 lat
19 levels
sfc - 3hPa
UK Met Office
LMCA-EPFL
[email protected]
4°latx5°lon
30 levels
sfc – 0.01hPa
GEOS winds
NASA GMAO
Lin and Rood scheme [Lin and
Rood, 1996]
mass fluxes are taken directly from the
GISS 2’ meteorology described by
Allen et al. [1997]
FRCGC
Kengo Sudo
[email protected]
2.8x2.8
32 levels
sfc – 3 hPa
GCM
(CCSR/NIES)
Lin and Rood scheme [Lin and
Rood, 1996]
prognostic Arakawa-Schubert scheme
in CCSR/NIES GCM
Météo-France, CNRM
[email protected], [email protected]
2°x2°
47 levels
sfc – 5 hPa
ARPEGE operational analyses
(Météo-France), 6 hourly
Options : forecasts, ECMWF
analyses or re-analyses.
Semi-lagrangian [Williamson
and Rasch, 1989]
Mass flux scheme [Bechtold et al. ,
2001]
Option: [Tiedke, 1989]
T42
37 levels,
sfc-2 hPa
ECMWF-IFS pieced-forecast data
for 2000
Second order moment [Prather,
1987]
Mass flux scheme of Tiedke [1989]
Veronica Montanaro
[email protected]
Gianni Pitari
[email protected]
10°X22.5°
26 levels
sfc-0.04 hPa
GCM
Eulerian flux form
Pitari et al (2002) following Muller and
Brasseur (1995)
Jose M. Rodriguez
[email protected]
Susan Strahan
[email protected]
4x5
46 levels
sfc – 0.15 mb
NASA-GMAO
(GEOS-STRAT)
Lin and Rood (1996)
Utilize archived mass fluxes Transport scheme from MATCH
Jose M. Rodriguez
[email protected]
Susan Strahan
[email protected]
4x5
52 levels
sfc - .007 mbar
CCM3
Lin and Rood (1996)
FRCGC
Oliver Wild [email protected]
JRC- Brussels- PF
L’Aquila University
NASA-GSFC
NASA-GSFC
2
Utilize archived mass fluxes Transport scheme from MATCH
NASA-GSFC
GMICCM
MOZECH
Max Planck Institute for
Meteorology, Hamburg
(MPI-M)
Jose M. Rodriguez
[email protected]
Susan Strahan
[email protected]
4x5
52 levels
sfc - .007 mbar
CCM3
Lin and Rood (1996)
Utilize archived mass fluxes Transport scheme from MATCH
Global, T63L31
(Gaussian grid,
approx. 1.91.9)
ECHAM5.2 in AMIP mode with
SST and seaice from IPCC run
transient 1850-2000 and continued
with scenario SRES B1 (IPCC run
with coupled atmosphere-ocean
model, AQ2030 model without
ocean)
Lin&Rood
Tiedtke with modifications after
Nordeng
T42, L26, extending 4
hPa
CCSM3
Lin&Rood
Zhang&McFarlane (deep); Hack
(shallow)
Martin G. Schultz
[email protected]
LLNL
NCAR
MOZART4
STOCED
Jean Francois Lamarque
Unvisity of EDingburg
UM_CAM
GISS
NASA
JRC- Brussels- PF
JRC Brussels
3
IPCC4 Experiment II: 2030 Photcomp
•Focus on the year 2030; ‘the inter-mediate’ future which is of
direct relevance to policy makers
•New emissions scenarios that recently became available
from the IIASA group: lower emissions of CH4 and O3
precursors.
•Emphasis on the synergetic effect of air quality and
greenhouse gas emissions (CH4); with focus on human
health and vegetation exposure.
•Calculate the corresponding Radiative Forcing.
•Climate change and emission controls as driving factors of
air pollution
• Synthesis of results to be delivered to IPCC AR4 Chapter 7 :
“Coupling between Changes in the Climate System and
JRC Brussels
4
Biogeochemistry”
JRC- Brussels- PF
Scenarios/simulation S1-S5
Sim.
ID emissions
Meteo
Description
S1
IIASA-CLE-2000 2000
Baseline
S1c
IIASA-CLE-2000 1990s
Baseline for climatological period
S2
IIASA-CLE-2030 2000
IIASA current legislation
S2c
IIASA-CLE-2030 1990s
IIASA current legislation for climatological period
S3
IIASA-MFR2030
2000
IIASA MFR (Maximum Feasible Reduction optimistic
technology scenario)
S4
A2-2030
2000
SRES A2 (the most ‘pessimistic’ IPCC SRES scenario),
harmonized with IIASA emissions for 2000
S4s
A2-2030
2000
SRES A2 with ‘high’ ship emissions
JRC- Brussels- PF
S5c
JRC Brussels
IIASA-CLE-2030 2020s
Climate Change Simulation. Prescribed SST data for the
2020s.
5
NO emissions IPCC SRES scenarios
190
Maximum Feasible
Reduction.
TgNO
/year
IIASA, RAINS
Current Legislation.
170
150
A1B
A2
B1
B2
130
110
90
70
50
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
JRC- Brussels- PF
JRC Brussels
“large difference for period
2000-2020”
6
IPCC
JRC- Brussels- PF
JRC Brussels
7
NOx regional estimates RAINS
USA
China
Ships + aircraft
Special exp. Lead by
V. Eyring (DLR)
JRC- Brussels- PF
JRC Brussels
8
JRC- Brussels- PF
JRC Brussels
9
This paper describes:
•IIASA emission scenarios (gridded + source categories)
•Development of CH4 concentrations used in 2000 and 2030
experiments
The IPCC experiment is a natural extension of this work:
•Multi model (almost 20 models, USA, Europe, Japan)
•Include A2 SRES (non proliferation) (worked up, thanks to
A. Sankovski
•Climate change (6 models)
•NH3 emission (from IMAGE3; B. Eickhout, L. Bouwman
provided 2000 and SRES B2 2030.
•Biomass burning (GFED, G.vd Werf, kept constant among
scenarios)
JRC- Brussels- PF
JRC Brussels
10
REQUESTED OUTPUT
•Hourly surface ozone [ppbv]
•Daily average tropospheric column ozone
•10:30 Local Time NO2 column (molec/cm2).
•10:30 Local Time CH2O column (molec/cm2).
•2D monthly O3 dry , oxidized and reduced nitrogen, and sulfur deposition fields.
•3D monthly mean fields for O3, CO, CH4 NO, NO2, and OH.
•3D monthly mean field of the CH4+OH destruction flux.
•3D monthly budgets of ozone production and destruction, 2D surface deposition.
•2D stratospheric O3 influx
JRC- Brussels- PF
JRC Brussels
11
Deposition of NOy, NHx, and SOx:
Ecosystem inputs
Biodiversity
Eutrophication
Acidification
F. Dentener, J. Drevot, J.F. Lamarque, others
JRC- Brussels- PF
JRC Brussels
12
0
JRC Brussels
GFDL
GISS
FRSG
GEOS-CHEM
CHASERGC
CHASERCTM
JRC- Brussels- PF
Emissions
MOCAGE
MOZECH
TM5
LMDZ
STOCED
TM4
NCAR
MATCHMATCH-
IASB
LLNL
NOy Deposition
90
80
70
60
50
S1
40
30
S2
20
S3
10
S4
S5
13
NOy WET DEPOSITION
JRC- Brussels- PF
JRC Brussels
14
Difference of S2-S1, total NOy deposition.
JRC- Brussels- PF
JRC Brussels
15
NOy wet deposition zoom over Europe
JRC- Brussels- PF
JRC Brussels
16
JRC- Brussels- PF
JRC Brussels
17
SOMO35
35 ppbv WHO recommendation
• Sum of excess of daily maximum 8-h means over a cutoff of 35
ppb calculated for all days of the year.
• Diagnostics: ppb*days
• But also look at other diagnostics/air quality indices, as well as
model ozone deposition fluxes. Lisa Emberson, Rita van
Dingenen, Martin Schultz, others.
JRC- Brussels- PF
JRC Brussels
18
SUMO35, S1
JRC- Brussels- PF
JRC Brussels
19
SUMO35, S2-S1
JRC- Brussels- PF
JRC Brussels
20
SUMO35, S3-S1
JRC- Brussels- PF
JRC Brussels
21
“Air quality from space”
• NO2 column from GOME 2000; with models
• In the light of uncertainties between different retrievals
• Exercise lead by H. Eskes, T. van Noije (KNMI); Claire
Granier (POET), N. Savage, Uni Bremen,
Harvard/Dalhousie.
JRC- Brussels- PF
JRC Brussels
22
Dalhousie/Harvard vs. BIRA/KNMI
JRC- Brussels- PF
JRC Brussels
23
JRC- Brussels- PF
JRC Brussels
24
Experiment 2: S4 Climate Change and Radiative Forcing
•How will climate change modify atmospheric composition by 2030?
•Repeat S2 (CLE emissions) with changed climate
•Multiple years needed to see signal above interannual variability
•Prescribed SSTs from HadCM3 is92a expt
Analysis of:
Zonal mean ozone fields
Ozone budgets;
Climate change experiments
David Stevenson+ climate change modellers
JRC- Brussels- PF
JRC Brussels
25
Extra
model
here
JRC- Brussels- PF
Annual Zonal Mean O3 S1
Mask O3>150ppbv
JRC Brussels
26
JRC- Brussels- PF
JRC Brussels
-10 -5
0 5 10
ppbv
Annual Zonal Mean
ΔO3 27S2 – S1
S1 (y2000) O3 Budgets / Tg(O3)/yr)
7000
6000
P
5000
4000
L
3000
2000
Sinf
D
Smod
R
_C
T
E
R M
_G
C
M
F
G
E RS
O
S GC
-C
H
EM
G
FD
G
M L
IC
G CM
LL M
N ID
L- A
IM O
P
A
S CT
TO
C
E
D
U TM
M
5
_C
LM A
D M
zI
N
C
A
1000
0
AS
C
H
C
H
AS
E
JRC- Brussels- PF
JRC Brussels
28
-100
JRC Brussels
HA
C SE
HA R
SE _CT
R M
_G
C
M
F
G
R
EO S
S- GC
CH
EM
G
F
G DL
M
IC
C
LL GM M
N
L- I DA
IM O
PA
ST C
O T
CE
D
T
U M
M 5
_
LM CA
Dz M
IN
C
A
C
S2–S1 Δ(O3 Budgets) / Tg(O3)/yr)
600
500
400
P
300
L
D
200
Sinf
100
Smod
0
JRC- Brussels- PF
29
JRC- Brussels- PF
JRC Brussels
30
How is this BIG effort going to be used:
•GRL paper with high lights and synthesis
•Some results in IPCC chapter 7
•Deposition (F. Dentener et al.)
•Surface ozone and health (K. Ellingsen et al.)
•Climate change, ozone, ch4 and RF (D. Stevenson et al.)
•NO2 (H. Eskes et al.)
•Ecosystems and ozone fluxes ( R. v Dingenen, L. Emberson,
D. Stevenson tbd)
•And hopefully a lot of spin-off publications and users.
JRC- Brussels- PF
JRC Brussels
31
JRC- Brussels- PF
JRC Brussels
32