The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un.
Download ReportTranscript The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un.
The IPCC AR4 Experiment II: Air pollution and climate change in 2030 The team: Frank Dentener, JRC emissions, deposition, organisation. David Stevenson, Un. Edinburgh ozone budgets, climate change, organisation H. Eskes, KNMI NO2 columns Kjerstin Ellingsen, Un. Oslo: surface ozone+data handling, web-site + ca. 20 participating groups from Europe, US, and Japan. JRC- Brussels- PF JRC Brussels 1 Model Institute Contact, e-mail addresses Domain / resolution Underlying GCM/ Meteorology Advection scheme Convection scheme IASB IASB/Belgium J.-F. Müller [email protected] 5 x 5 25 levels sfc – 50 hPa monthly means from ECMWF reanalyses (1993-2001 ERA40) semi-Lagrangian [Smolarkiewicz and Rasch, 1991] described in Costen et al. [1998]; cumulo-nimbus distrbution taken from ISCCP KNMI KNMI / IMAU Utrecht Twan van Noije Peter van Velthoven 2lat x 3lon 25 levels sfc – 0.48 hPa ECMWF 6-h operational forecasts (2000) Slopes scheme [Russel and Lerner, 1981] mass flux scheme of Tiedtke [1989] ECMWF 3-6-h operational forecasts (2000) Slopes scheme [Russel and Lerner, 1981] mass flux scheme of Tiedtke [1989] TM5 JRC [email protected] [email protected] 1lat x 1lon zoom over Europe, N. America, and Asia, other wise 6x4 25 levels sfc – 0.48 hPa MATCHMPIC Max Planck Institute for Chemistry / NCAR Tim.butler@ 5.6 x 5.6 28 levels sfc – 2 hPa NCEP/NCAR Reanalysis and ECMWF Reanalysis SPITFIRE [Rasch and Lawrence, 1998] Zhang and McFarlane [1995] for deep convection; Hack [1994] for shallow convection UIO2 University of Oslo Michael Gauss [email protected] 2.8x2.8 40 levels sfc – 10 hPa ECMWF forecast data Second Order Moments [Prather, 1986] mass flux scheme of Tiedke [1989] LMDz/ INCA LSCE GCM (or nudged to ECMWF/ERA15-ERA40-OD) Finite Volume second order (Van Leer, 1977) mass flux scheme of Tiedke [1989] 3.75 x 2.5 20 levels sfc – 40km GCM (HadGEM) Lagrangian Described in Collins et al. [2002] STOCHEMHadGEM GEOSCHEM CHASER MOCAGE FRSGC_UCI ULAQ GMIDAO JRC Brussels GMICCM Didier Hauglustaine ([email protected]) Sophie Szopa ([email protected]) 1.lon x 2.5 lat 19 levels sfc - 3hPa UK Met Office LMCA-EPFL [email protected] 4°latx5°lon 30 levels sfc – 0.01hPa GEOS winds NASA GMAO Lin and Rood scheme [Lin and Rood, 1996] mass fluxes are taken directly from the GISS 2’ meteorology described by Allen et al. [1997] FRCGC Kengo Sudo [email protected] 2.8x2.8 32 levels sfc – 3 hPa GCM (CCSR/NIES) Lin and Rood scheme [Lin and Rood, 1996] prognostic Arakawa-Schubert scheme in CCSR/NIES GCM Météo-France, CNRM [email protected], [email protected] 2°x2° 47 levels sfc – 5 hPa ARPEGE operational analyses (Météo-France), 6 hourly Options : forecasts, ECMWF analyses or re-analyses. Semi-lagrangian [Williamson and Rasch, 1989] Mass flux scheme [Bechtold et al. , 2001] Option: [Tiedke, 1989] T42 37 levels, sfc-2 hPa ECMWF-IFS pieced-forecast data for 2000 Second order moment [Prather, 1987] Mass flux scheme of Tiedke [1989] Veronica Montanaro [email protected] Gianni Pitari [email protected] 10°X22.5° 26 levels sfc-0.04 hPa GCM Eulerian flux form Pitari et al (2002) following Muller and Brasseur (1995) Jose M. Rodriguez [email protected] Susan Strahan [email protected] 4x5 46 levels sfc – 0.15 mb NASA-GMAO (GEOS-STRAT) Lin and Rood (1996) Utilize archived mass fluxes Transport scheme from MATCH Jose M. Rodriguez [email protected] Susan Strahan [email protected] 4x5 52 levels sfc - .007 mbar CCM3 Lin and Rood (1996) FRCGC Oliver Wild [email protected] JRC- Brussels- PF L’Aquila University NASA-GSFC NASA-GSFC 2 Utilize archived mass fluxes Transport scheme from MATCH NASA-GSFC GMICCM MOZECH Max Planck Institute for Meteorology, Hamburg (MPI-M) Jose M. Rodriguez [email protected] Susan Strahan [email protected] 4x5 52 levels sfc - .007 mbar CCM3 Lin and Rood (1996) Utilize archived mass fluxes Transport scheme from MATCH Global, T63L31 (Gaussian grid, approx. 1.91.9) ECHAM5.2 in AMIP mode with SST and seaice from IPCC run transient 1850-2000 and continued with scenario SRES B1 (IPCC run with coupled atmosphere-ocean model, AQ2030 model without ocean) Lin&Rood Tiedtke with modifications after Nordeng T42, L26, extending 4 hPa CCSM3 Lin&Rood Zhang&McFarlane (deep); Hack (shallow) Martin G. Schultz [email protected] LLNL NCAR MOZART4 STOCED Jean Francois Lamarque Unvisity of EDingburg UM_CAM GISS NASA JRC- Brussels- PF JRC Brussels 3 IPCC4 Experiment II: 2030 Photcomp •Focus on the year 2030; ‘the inter-mediate’ future which is of direct relevance to policy makers •New emissions scenarios that recently became available from the IIASA group: lower emissions of CH4 and O3 precursors. •Emphasis on the synergetic effect of air quality and greenhouse gas emissions (CH4); with focus on human health and vegetation exposure. •Calculate the corresponding Radiative Forcing. •Climate change and emission controls as driving factors of air pollution • Synthesis of results to be delivered to IPCC AR4 Chapter 7 : “Coupling between Changes in the Climate System and JRC Brussels 4 Biogeochemistry” JRC- Brussels- PF Scenarios/simulation S1-S5 Sim. ID emissions Meteo Description S1 IIASA-CLE-2000 2000 Baseline S1c IIASA-CLE-2000 1990s Baseline for climatological period S2 IIASA-CLE-2030 2000 IIASA current legislation S2c IIASA-CLE-2030 1990s IIASA current legislation for climatological period S3 IIASA-MFR2030 2000 IIASA MFR (Maximum Feasible Reduction optimistic technology scenario) S4 A2-2030 2000 SRES A2 (the most ‘pessimistic’ IPCC SRES scenario), harmonized with IIASA emissions for 2000 S4s A2-2030 2000 SRES A2 with ‘high’ ship emissions JRC- Brussels- PF S5c JRC Brussels IIASA-CLE-2030 2020s Climate Change Simulation. Prescribed SST data for the 2020s. 5 NO emissions IPCC SRES scenarios 190 Maximum Feasible Reduction. TgNO /year IIASA, RAINS Current Legislation. 170 150 A1B A2 B1 B2 130 110 90 70 50 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 JRC- Brussels- PF JRC Brussels “large difference for period 2000-2020” 6 IPCC JRC- Brussels- PF JRC Brussels 7 NOx regional estimates RAINS USA China Ships + aircraft Special exp. Lead by V. Eyring (DLR) JRC- Brussels- PF JRC Brussels 8 JRC- Brussels- PF JRC Brussels 9 This paper describes: •IIASA emission scenarios (gridded + source categories) •Development of CH4 concentrations used in 2000 and 2030 experiments The IPCC experiment is a natural extension of this work: •Multi model (almost 20 models, USA, Europe, Japan) •Include A2 SRES (non proliferation) (worked up, thanks to A. Sankovski •Climate change (6 models) •NH3 emission (from IMAGE3; B. Eickhout, L. Bouwman provided 2000 and SRES B2 2030. •Biomass burning (GFED, G.vd Werf, kept constant among scenarios) JRC- Brussels- PF JRC Brussels 10 REQUESTED OUTPUT •Hourly surface ozone [ppbv] •Daily average tropospheric column ozone •10:30 Local Time NO2 column (molec/cm2). •10:30 Local Time CH2O column (molec/cm2). •2D monthly O3 dry , oxidized and reduced nitrogen, and sulfur deposition fields. •3D monthly mean fields for O3, CO, CH4 NO, NO2, and OH. •3D monthly mean field of the CH4+OH destruction flux. •3D monthly budgets of ozone production and destruction, 2D surface deposition. •2D stratospheric O3 influx JRC- Brussels- PF JRC Brussels 11 Deposition of NOy, NHx, and SOx: Ecosystem inputs Biodiversity Eutrophication Acidification F. Dentener, J. Drevot, J.F. Lamarque, others JRC- Brussels- PF JRC Brussels 12 0 JRC Brussels GFDL GISS FRSG GEOS-CHEM CHASERGC CHASERCTM JRC- Brussels- PF Emissions MOCAGE MOZECH TM5 LMDZ STOCED TM4 NCAR MATCHMATCH- IASB LLNL NOy Deposition 90 80 70 60 50 S1 40 30 S2 20 S3 10 S4 S5 13 NOy WET DEPOSITION JRC- Brussels- PF JRC Brussels 14 Difference of S2-S1, total NOy deposition. JRC- Brussels- PF JRC Brussels 15 NOy wet deposition zoom over Europe JRC- Brussels- PF JRC Brussels 16 JRC- Brussels- PF JRC Brussels 17 SOMO35 35 ppbv WHO recommendation • Sum of excess of daily maximum 8-h means over a cutoff of 35 ppb calculated for all days of the year. • Diagnostics: ppb*days • But also look at other diagnostics/air quality indices, as well as model ozone deposition fluxes. Lisa Emberson, Rita van Dingenen, Martin Schultz, others. JRC- Brussels- PF JRC Brussels 18 SUMO35, S1 JRC- Brussels- PF JRC Brussels 19 SUMO35, S2-S1 JRC- Brussels- PF JRC Brussels 20 SUMO35, S3-S1 JRC- Brussels- PF JRC Brussels 21 “Air quality from space” • NO2 column from GOME 2000; with models • In the light of uncertainties between different retrievals • Exercise lead by H. Eskes, T. van Noije (KNMI); Claire Granier (POET), N. Savage, Uni Bremen, Harvard/Dalhousie. JRC- Brussels- PF JRC Brussels 22 Dalhousie/Harvard vs. BIRA/KNMI JRC- Brussels- PF JRC Brussels 23 JRC- Brussels- PF JRC Brussels 24 Experiment 2: S4 Climate Change and Radiative Forcing •How will climate change modify atmospheric composition by 2030? •Repeat S2 (CLE emissions) with changed climate •Multiple years needed to see signal above interannual variability •Prescribed SSTs from HadCM3 is92a expt Analysis of: Zonal mean ozone fields Ozone budgets; Climate change experiments David Stevenson+ climate change modellers JRC- Brussels- PF JRC Brussels 25 Extra model here JRC- Brussels- PF Annual Zonal Mean O3 S1 Mask O3>150ppbv JRC Brussels 26 JRC- Brussels- PF JRC Brussels -10 -5 0 5 10 ppbv Annual Zonal Mean ΔO3 27S2 – S1 S1 (y2000) O3 Budgets / Tg(O3)/yr) 7000 6000 P 5000 4000 L 3000 2000 Sinf D Smod R _C T E R M _G C M F G E RS O S GC -C H EM G FD G M L IC G CM LL M N ID L- A IM O P A S CT TO C E D U TM M 5 _C LM A D M zI N C A 1000 0 AS C H C H AS E JRC- Brussels- PF JRC Brussels 28 -100 JRC Brussels HA C SE HA R SE _CT R M _G C M F G R EO S S- GC CH EM G F G DL M IC C LL GM M N L- I DA IM O PA ST C O T CE D T U M M 5 _ LM CA Dz M IN C A C S2–S1 Δ(O3 Budgets) / Tg(O3)/yr) 600 500 400 P 300 L D 200 Sinf 100 Smod 0 JRC- Brussels- PF 29 JRC- Brussels- PF JRC Brussels 30 How is this BIG effort going to be used: •GRL paper with high lights and synthesis •Some results in IPCC chapter 7 •Deposition (F. Dentener et al.) •Surface ozone and health (K. Ellingsen et al.) •Climate change, ozone, ch4 and RF (D. Stevenson et al.) •NO2 (H. Eskes et al.) •Ecosystems and ozone fluxes ( R. v Dingenen, L. Emberson, D. Stevenson tbd) •And hopefully a lot of spin-off publications and users. JRC- Brussels- PF JRC Brussels 31 JRC- Brussels- PF JRC Brussels 32