MEG/EEG Inverse problem and solutions In a Bayesian Framework ? Jérémie Mattout Lyon Neuroscience Research Centre With many thanks to Karl Friston, Christophe Phillips, Rik Henson,
Download ReportTranscript MEG/EEG Inverse problem and solutions In a Bayesian Framework ? Jérémie Mattout Lyon Neuroscience Research Centre With many thanks to Karl Friston, Christophe Phillips, Rik Henson,
MEG/EEG Inverse problem and solutions In a Bayesian Framework ? Jérémie Mattout Lyon Neuroscience Research Centre With many thanks to Karl Friston, Christophe Phillips, Rik Henson, Jean Daunizeau EEG/MEG SPM course, Bruxelles, 2011 Talk’s Overview • SPM rationale - generative models - probabilistic framework - Twofold inference: parameters & models • EEG/MEG inverse problem and SPM solution(s) - probabilistic generative models - Parameter inference and model comparison A word about generative models Model: "measure, standard" ; representation or object that enables to describe the functionning of a physical system or concept A model enables you to: - Simulate data - Estimate (non-observables) parameters - Predict future observations - Test hypothesis / Compare models Physiological Observations Stimulations Behavioural Observations A word about generative models Model: "measure, standard" ; representation or object that enables to describe the functionning of a physical system or concept A model enables you to: - Simulate data - Estimate (non-observables) parameters - Predict future observations - Test hypothesis / Compare models MEG Observations (Y) Sources/Network () Y = f(,u) Model m: f, , u Auditory-Visual Stimulations (u) Probabilistic / Bayesian framework Probability of an event: - represented by real numbers - conforms to intuition - is consistent • normalization: a=2 • marginalization: a=2 b=5 • conditioning : (Bayes rule) Probabilistic modelling MEG Observations (Y) Y = f(,u) Sources/Network () Model m: f, , u Auditory-Visual Stimulations (u) Likelihood Posterior P Y , M PY , M P M Prior PY M Marginal or Evidence PY M PY , M P M Probabilistic modelling enables: - To formalize mathematically our knowledge in a model m - To account for uncertainty - To make inference on both model parameters and models themselves A toy example MEG Observations (Y) - One dipolar source with known position and orientation. - Amplitude ? Measurment noise Linear f Y = L + ɛ Source amplitude Model m: Source gain vector Gaussian distributions p ɛ ~Ν 𝐿𝜃, 𝑉1 or 𝑝 𝑌 𝜃 ~Ν 𝐿𝜃, 𝑉1 & 𝑝 𝜃 ~Ν 0, 𝑉2 Prior Likelihood A toy example MEG Observations (Y) Model m: Bayes rule 𝑝 𝑌𝜃 𝑝 𝜃 𝑝 𝜃𝑌 = 𝛼 𝑝 𝑌𝜃 𝑝 𝜃 𝑝 𝑌 Posterior 𝑝 𝑌 𝜃 ~Ν 𝐿𝜃, 𝑉1 & 𝑝 𝜃 ~Ν 0, 𝑉2 Hypothesis testing: model comparison Occam’s razor or principle of parsimony 𝑝 𝑌𝜃 𝑝 𝜃 𝑝 𝜃𝑌 = 𝑝 𝑌 « complexity should not be assumed without necessity » 𝑝 𝑌𝑚 = 𝑝 𝑌 𝜃, 𝑚 𝑝 𝜃 𝑚 dθ y=f(x) x model evidence p(y|m) y = f(x) Evidence space of all data sets Hypothesis testing: model comparison Bayesian factor • define the null and the alternative hypothesis H (or model m) in terms of priors, e.g.: p Y H 0 1 if 0 H 0 : p H 0 0 otherwise H1 : p H1 N 0, p Y H1 y • invert both generative models (obtain both model evidences) • apply decision rule, i.e.: if P H0 y P H1 y 1 then reject H0 Y space of all datasets EEG/MEG inverse problem Probabilistic framing forward computation Likelihood & Prior 𝑝 𝑌 𝜃, 𝑚 𝑝 𝜃 𝑚 Posterior & Evidence 𝑝 𝜃 𝑌, 𝑚 𝑝 𝑌𝑚 inverse computation EEG/MEG inverse problem Distributed/Imaging model Likelihood Y LJ PY , M N LJ , Parameters : (J,) Hypothesis m: distributed (linear) model, gain matrix L, gaussian distributions Prior Source level P J N 0, # sources Sensor level # sensors # sources 2I # sensors IID (Minimum Norm) Maximum Smoothness (LORETA-like) EEG/MEG inverse problem Incorporating Multiple Constraints Likelihood Y LJ PY , M N LJ , Paramètres : (J,,) Hypothèses m: hierarchical model, operator L + components C Prior … Source (or sensor) level P J N 0, 1Q k Q log ~ 𝑁 𝛼, 𝛽 1 k Multiple Sparse Priors (MSP) Estimation procedure Expectation Maximization (EM) / Restricted Maximum Likelihood (ReML) / Free-Energy optimization / Parametric Empirical Bayes (PEB) Iterative scheme E-step qˆ ( J M ) arg max F q( J M ) p( J Y , ˆ, M ) M-step ˆ arg max F F log p(Y M ) KLq , p Y , M log pY , M q KLq , p M accuracy complexity Estimation procedure Model comparison based on the Free-energy At convergence F ln p (Y | M ) accuracy( M ) complexity( M ) Fi 1 2 3 model Mi At the end of the day Somesthesic data Example MEG - Epilepsy - Pharmacoresistive Epilepsy (surgery planning): • symptoms • PET + sIRM • SEEG Romain Bouet Julien Jung François Maugière Could MEG replace or at least complement and guide SEEG ? Seizure 30s 120 patients : MEG proved very much informative in 85 patients Example MEG - Epilepsy Patient 1 : model comparison Romain Bouet Julien Jung François Maugière SEEG MEG (best model) Example MEG - Epilepsy Patient 2 : estimated dynamics Romain Bouet Julien Jung François Maugière temps SEEG lésion occipitale Conclusion The SPM probabilistic inverse modelling approach enables to: • Estimate both parameters and hyperparameters from the data • Incorporate multiple priors of different nature • Estimate a full posterior distribution over model parameters • Estimate an approximation to the log-evidence (the free-energy) which enables model comparison based on the same data • Encompass multimodal fusion and group analysis gracefully • Note that SPM also include a flexible and convenient meshing tool, as well as beamforming solutions and a Bayesian ECD approach… Thank you for your attention EEG/MEG inverse problem Graphical representation ( j) Q1( j ) Q2 ... Q1(e) Q(2e) i( e ) i( j ) C( e ) ( j) C N (0, C) N (0, C) Ε J Fixed L Variable Data ... Y Fusion of different modality ( j) Q1( j ) Q2 ( e) ( e) Q11 Q12 ( e) Q(21e) Q22 i( j ) ij( e ) C( j ) C1( e) C(2e) N (0, C) N (0, C) J Ε LMEG LEEG YMEG YEEG Incorporating fMRI priors Hypothesis testing: inference on parameters Frequentist vs. Bayesian approach • define the null, e.g.: H0 : 0 • invert model (obtain posterior pdf) p y p t H 0 P H0 y P t t * H 0 t t y t* H0 : 0 • estimate parameters (obtain test stat.) • define the null, e.g.: • apply decision rule, i.e.: • apply decision rule, i.e.: if P t t * H 0 then reject H0 classical inference (SPM) if P H 0 y then accept H0 Bayesian inference (PPM)