Getting a Grip on 5000 Taxa and 500,000 Specimens: Lessons from a Planetary Biodiversity Inventory Project presented by Randall T.

Download Report

Transcript Getting a Grip on 5000 Taxa and 500,000 Specimens: Lessons from a Planetary Biodiversity Inventory Project presented by Randall T.

Slide 1

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 2

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 3

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 4

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 5

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 6

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 7

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 8

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 9

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 10

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 11

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 12

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 13

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 14

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 15

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 16

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 17

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 18

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 19

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 20

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 21

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 22

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 23

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 24

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 25

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 26

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 27

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 28

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 29

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 30

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 31

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 32

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 33

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 34

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 35

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 36

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 37

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 38

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 39

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 40

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 41

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 42

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 43

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 44

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 45

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 46

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 47

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 48

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 49

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 50

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 51

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 52

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 53

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 54

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 55

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 56

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 57

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 58

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 59

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 60

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 61

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 62

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 63

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 64

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 65

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 66

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 67

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 68

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 69

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 70

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 71

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 72

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 73

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 74

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 75

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 76

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 77

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 78

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 79

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 80

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 81

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 82

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 83

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 84

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 85

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 86

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87


Slide 87

1

Getting a Grip on 5000 Taxa and
500,000 Specimens:
Lessons from a
Planetary Biodiversity Inventory
Project
presented by

Randall T. Schuh
Curator and Chair
Division of Invertebrate Zoology
American Museum of Natural History, New York

2

Heteroptera: True Bugs




7 infraorders
85 families
40,000 described
species

3

4

Miridae: Plant Bugs


Infraorder:
Cimicomorpha

• 1,350

valid genera

• 10,200

valid species

• mostly

phytophagous

• high

host specificity

• many

myrmecomorphic

• some

aposematic

Systema Naturae, 1758
Linnaeus,C.
World fauna
17 Miridae spp.
No figures

5

Biologia Centrali Americana, 1883, 1884

Distant, W. L.
Central American fauna
200 Miridae spp.
5500 specimens of
Heteroptera
Hand-colored figures

6

Fauna of British India, 1904, 1910

Distant, W. L.
Tropical Asian fauna
86 Miridae spp.
~ 300 specimens
B&W line drawings

7

South African Animal Life, 1960

Carvalho, J. C. M.
South African fauna
42 Miridae species
< 500 specimens studied
B&W figures

8

9

Species Accumulation
1600
Palearctic

1400
1200

Nearctic

1000
800
600

Neotropical

400

Ethiopian

200

Oriental
Australian

0
ar
e
y

71
8
1

91
8
1

12
9
1

32
9
1

53
9
1

73
9
1

93
9
1

10
1

Australian Miridae, 1994
• 180 described species
• 1.8% of known world fauna

• ~ 500 species in collections
• 25,000 specimens in collections
• 35 published host records

11
1

Gerry Cassis
north of
Kalbarri National Park,
Western Australia
October, 1996

12
1

Australia: 1995--2002 Localities

%
%
%%
%
%%
%%
%
%
%
%
%%
%
%
%%
%%
%
%
%
%
%
$%
%
%
%
%
%
%
%
%
%%
%%

$
$
$
$$

%
%
%
%
%
%
%

%
%%%
%%
%
%
$$ $$
%
%
$
#
%
%
$$$
%
$%% $
#%
$$$
%
#
#
$$
### #%
#$ $
#
$
$
$
#
#$
$
%%
#$%
%
%
# %
$
$
$$%%
#
#$
#
$
#
#
%
$
#
$ $$$
%
%
$ ### ########
$$
#$$#$%
$
##
$#
#$####$#$
$##%
$#

> 400 localities

%%
% %
%

$ $ $ $ $$$$
$$ $ $$
$

$$$$

$
$

$

%

##### ###
%
%
$$$$
%
# # #### ## #
#
##
%
%%
%%
%%
#% %
% %
% %
%%
##
#%
#
% %# #%%
#$
#$
###
%
%
#### #
# ##
##$# %
$
$ ## #
$
###
# #
####
##
# ## ##
##
##
###
##
#
## ###
#
#
#
## #

P bi _ a u str al ia _ lo c a liti e s r ev

#
%
$
$
#
%
#
$

19 9 5
19 9 6
19 9 7
19 9 8
19 9 9
20 0 1
20 0 2
20 0 4
Co u n try .sh p

13
1

Australian Miridae: 2002


210 described species: + 15%



> 1,500 spp. in collections: + 300%



> 100,000 specimens: + 400%



1,400 recorded hosts: + 4000%

14
1

Planetary Biodiversity Inventories
Funding: US National Science Foundation, 2003
Criteria: Worldwide and monophyletic taxa
Duration: 5 years
Projects: Eumycetozoa (slime molds): 1000 species
Solanum (Solanaceae): 1500 species
Miridae (Heteroptera): 5000 species

Siluriformes (cat fishes): 2500 species
http://research.amnh.org/pbi

15
1

16
1

Target Taxa: Orthotylinae and Phylinae
Status as of 2003


8 recognized tribes



485 described genera



3900 described species



~ 90 new genera



~ 1200 new species in
collections

17
1

Exemplar Orthotylinae and Phylinae

18
1

PBI Goals


~ 1000 new species to be described



improved classification



5,000 target spp. in Systematic Catalog



27,000 pages in Digital Library



~ 500,000 specimens in Specimen Database



3500 vouchered host plants



~ 20,000 habitus, morphology, host, and
habitat images

19
1

Overview of PBI Approaches














Internet dissemination of information
Systematic Catalog
Specimen Databasing
Georeferencing
Unique Specimen Identification
Species Pages
Processing of Existing Collections
Digital Imaging
Field Work/Specimen Processing
Host Documentation

Transmitting Systematic Information
over the Internet

20
1

21
1

22
1

23
1

Systematic Catalog:
On-line Relational Database
Features





Up-to-date nomenclature and classification
Annotations on relevant literature
Host and geographic information from literature
Portal to other databases/features








Specimen Database
Species mapping
Host data from specimens
Digital Library
Image Database
Species pages
Web-based aids to identification

24
1

25
1

26
1

27
1

28
1

29
1

30
1

Specimen Database
Functions of PBI Specimen Database
• Capture specimen data
• Incorporate unique specimen identification
• Serve data over the Internet

Possible Approaches
• Off the shelf vs. newly developed application
• Browser-based vs. program-based access
• Open source vs. proprietary software
• Stand-alone vs. network-based usage

31
1

PBI Specimen Database Approach










Tailored to invertebrate collections
Browser based
Open source software
Data entry over Internet to central server
Efficient data entry
Batch loading of unique specimen identifiers
Multiple modes





Museum Mode
Field Mode
Identification Mode
Edit Mode

32
1

33
1

Georeferencing
GEOLocate






Stand alone program
Easy to use
Individual & batch processing
Manual correction capability

Limitations
– parsing of locality names
– still under development
http://www.museum.tulane.edu/geolocate/default.aspx

34
1

35
1

36
1

Unique Specimen Identification
Justification
• Facilitate specimen tracking

Necessary Attributes
• Machine readability

- Bar codes
- Matrix codes

• Human readability
• Small size of code-bearing labels
• Ease of integration into
existing collection practices

37
1

38
1

39
1

Species Pages
Original concept






Nomenclatural history
Descriptions/diagnoses
Figures
Distributional summary
Biological data

New capabilities via Internet





Dynamic updates
Dynamic mapping
Improved access
Links to additional resources

Fauna Insectorum Germanicae, 1805

Panzer, G.W.F.
9 Miridae spp.
Hand-colored figures

40
1

41
1

42
1

Processing of Existing Collections
Select specimens that:
• Increase taxon numbers
• Extend geographic coverage
• Extend host coverage

Groups of taxonomists sort specimens to:
• Minimize handling
• Speed processing

Sort according to following hierarchy:
• Taxon
• Geography
• Sex

43
1

Difficulties and Solutions
Difficulties encountered





Historical organization of collections
Pinned directly into boxes/drawers
No sorting to family-rank taxa and below
Lack of web-based inventories

Solutions proposed






Systematic organization of collections
Movement to drawer and unit system
Sort to family-rank taxa and below
Use of unique specimen identification
Creation of web-based inventories

44
1

Principal PBI Collection Resources
Table 1. PRINCIPLE WORLD COLLECTIONS OF ORTHOTYLINAE AND PHYLINAE
Acquisition of Collections: Specific

Collection

Geographic Coverage

45
1

No.
No.
No.
specimens Studied databased
American Museum of Natural History World (significant Australian holdings)
150,000
75,000
37,500
Australian Museum, Sydney
Australia*
58,000
3,000
35,000
Bishop Museum, Honolulu
Tropical Asia, Pacific Islands
15,000
10,000
7,500
California Academy of Sciences
World (important Nearctic holdings)
15,000
12,000
5,000
Canadian National Collection
Nearctic including Mexico
50,000
37,500
25,000
Hamburg University
Palearctic (important for reference)
6,000
5,700
0
Linnavuori Collection, Turku, Finland Middle East, Africa
40,000
36,000
0
Museu Nacional, Rio de Janeiro
mostly Neotropical (many types)
2,000
1,980
0
Museum d'Histoire Naturelle, Geneva Palearctic (no figures available)
Museum d'Histoire Naturelle, Paris
Europe, Africa, Madagascar
10,000
6,500
0
Museum Zoology, LIPI, Bogor
Tropical Asia
2,000
0
0
Nankai University Insect Collection
China
5,000
3,000
0
Natuurhistorisch Museum, Leiden
Tropical Asia (no figures available)
Natural History Museum, London
World (historical; many types)
10,000
9,500
0
Plant Protection Res. Inst., Pretoria South Africa
3,000
1,500
0
Royal Central African Museum
Central Africa
2,000
1,000
0
Smithsonian Institution
World (most Nearctic types)
75,000
50,000
25,000
Texas A&M University
Mexico, SE USA
25,000
10,000
2,500
Zoological Lab., Okayama University mostly Eastern Asia
10,000
3,000
6,000
Zoological Institute, St. Petersburg
World (premier Palearctic collection)
75,000
60,000
0
Zoological Museum, Helsiniki
World (historical; some types)
2,000
1,980
0
Totals
555,000 327,660
143,500

46
1

Digital Imaging of Specimens
Microptics-USA





Unique lighting
High depth of field
Real-time focusing
Rapid image
acquistion
• High resolution

47
1

48
1

Field Work Fundamentals







Application of taxon focused techniques
Maximize discovery of new taxa
Extend geographic coverage
Maximize biological information
Maximize specimen quality
Maximize specimen numbers

49
1

Collecting Equipment

50
1

Collecting Video

(A video of collecting was shown at this
stage in the slideshow.)

51
1

Processing Field Collections





Centralized mounting and labeling
Label copy derived directly from locality
database
Centralized rough sorting after host
labeling
Unique specimen identifiers added as
part of rough sorting process

52
1

Locality and Host Labels

53
1

Host Specificity in the Miridae
1170
1092

Mirid Species: 3044
Host Species: 1420

1014
936
858

Observations

780
702
624
546
468
390
312
234
156
78
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

FREQUENCY OF HOST PLANT SPECIES PER MIRID SPECIES

16

17

18

54
1

Host Documentation and Vouchering



Vouchers collected, pressed, and
associated with insect associates
Vouchers photo-documented








In field (digital SLR camera)
As herbarium specimens (scanning)

Vouchers identified by specialists
Vouchers deposited in recognized
herbaria
Voucher data part of insect labeling

Processing host
vouchers, Sept. 2004,
Compton Herbarium,
Cape Town

Vouchers ready for drying

55
1

SOUTH AFRICAN FIELD WORK
Western Cape as a PBI target area:
Namaqualand–Little Karoo–Fynbos







Extreme plant diversity and endemism
Unique biotic affinities
Limited prior sampling
Few publications and described taxa
Unstudied by classical & modern authors
No local specialists

56
1

South African Orthotylinae and
Phylinae: 1961, 1974
1961:

12 described species
0 documented hosts
250 specimens studied

1974: 100 described species: + 850%
50 documented hosts
2000 specimens studied: + 800%

57
1

58
1

South Africa: 2003, 2004 Localities

#

$$ $
$$$
$$
$$
$$
#$
#
###$#$
#
$
#
#$
$$
$#$
$$
$
$ $#$
$ ##
$#
$
#
$
$$#
$
$$#
$ #
#
#
#
#
#
#
## # ### ## ##
$
#
#
######
##
##
#

Pbi_south_africa_localities revised.dbf
# 2003
$ 2004
#
Pbi_australia_localities revised.dbf
Country.shp

>120 localities

South African Orthotylinae and
Phylinae, 2005



> 250 species: + 250%



> 350 documented hosts: + 700%



> 20,000 specimens: + 1000%

59
1

Looking west from Vanrhyns Pass Summit

60
1

Northern Namaqualand, SE of Kamieskroon

61
1

Collecting near Kamieskroon, northern Namaqualand

62
1

Cupressaceae: Widdringtonia sp. Widdringtoniola sp.

63
1

Solanaceae: Lycium sp.

Karoocapsus sp.

64
1

Geraniaceae: Pelargonium cucullatum

undescribed

65
1

Aizoaceae: Lampranthus sp.

Eminoculus sp.

66
1

Fabaceae: Lebeckia sericea

67
1

Pseudosthenarus sp.

Asteraceae: Leysera sp.

undescribed

68
1

69
1

AUSTRALIAN FIELD WORK

Australia as a PBI target area
• High plant diversity and endemicity,
especially in west and southwest
• Limited sampling
• Few publications and described taxa
• No local specialists historically

Open Acacia woodland, South Australia

70
1

Sand dune, north of Kalbarri Park, Western Australia

71
1

Heath lands, near Esperance, Western Australia

72
1

Xanthorrhoeaceae: Lomandra sp. Kirkaldyella sp.

73
1

Restionaceae: Hypolaena humilis

undescribed

74
1

Loranthaceae: Amyema sp.

Hypseloecus sp.

75
1

Proteaceae: Conospermum sp.

undescribed

76
1

Proteaceae: Grevillea sp.

3 undescribed

77
1

Proteaceae: Adenanthos cuneatus

undescribed

78
1

Myrtaceae: Melaleuca sp.

undescribed

79
1

Chenopodiaceae: Rhagodia sp.

undescribed

80
1

Casuarinaceae: Casuarina sp.

Austromirini sp.

81
1

Fabaceae: Acacia sp.

Austromiris sp.

82
1

Asteraceae: Waitzia acuminata

“Wallabicoris” sp.

83
1

PBI Accomplishments


20% increase in available specimens



20% increase in known species diversity



Continental-scale increase in geographic
coverage



> 500% increase in host-documented
specimens



> 1000% increase in host vouchers

84
1

PBI vs. Faunistics


World vs. local collection resources



World vs. regional perspective



Broad-scale vs. narrow taxonomic
conclusions



All-inclusive phylogenetic theories



Broad-scale vs. narrow biogeographic
conclusions



Broad-scale vs. regional taxonomic tools



One-stop biodiversity information shopping

85
1

Issues Clarified




Need for study of basic insect taxonomy
Need to improve biodiversity knowledge on a
global scale
Need to improve knowledge of insect biology

86
1

Acknowledgments















Gerry Cassis
Sheridan Hewson-Smith
Jason Larimer
Brenda Massie
Ella Massie-Schuh
Lorenzo Prendini
Michael Schwartz
F. Christian Thompson
Steve Thurston
Christiane Weirauch
Denise Wyniger
National Science Foundation
American Museum of Natural History
Australian Museum

http://research.amnh.org/pbi

87