DATA REDUCTION and ENHANCEMENT of GLOBAL COMPOSITES of SPOT-VEGETATION (VGT) Herman Eerens, Else Swinnen, Yves Verheijen Vlaamse Instelling voor Technologisch Onderzoek (Vito - Belgium) Frank Canters Vrije Universiteit.

Download Report

Transcript DATA REDUCTION and ENHANCEMENT of GLOBAL COMPOSITES of SPOT-VEGETATION (VGT) Herman Eerens, Else Swinnen, Yves Verheijen Vlaamse Instelling voor Technologisch Onderzoek (Vito - Belgium) Frank Canters Vrije Universiteit.

Slide 1

DATA REDUCTION and ENHANCEMENT
of
GLOBAL COMPOSITES
of
SPOT-VEGETATION (VGT)

Herman Eerens, Else Swinnen, Yves Verheijen
Vlaamse Instelling voor Technologisch Onderzoek (Vito - Belgium)

Frank Canters
Vrije Universiteit Brussel (VUB - Belgium)

Acknowledgements:

• Belgian Science Policy Office (Funding)
• JRC-SAI (Full year cycle of global VGT-S10)


Slide 2

MVC-Composites:
- still affected by clouds, bidirectional effects, measurement errors
- best visible / removable in longitudinal analysis (time series)
- cleaning procedures: MVC-month, BISE, Verhoef,...
Original
Cleaned

Original

0.7

Cleaned

0.6

0.6

0.5

0.5

0.4

0.4

NDVI

NDVI

0.7

0.3

0.3

0.2

0.2

0.1

0.1

0

0
0

30

60

90

120

150

180

210

240

270

300

330

360

0

30

60

90

Day in 1998

120

150

180

210

240

270

300

330

360

Day in 1998

NOAA-AVHRR: 365 x S1
Dec

SPOT-VEGETATION: 36 x S10
Jan
Amazonas

0.75
0.75

Nov

Feb
0.50

Oct

Mar

0.25

Sep

Apr

Aug

Nile Delta

Sahara

May
July

June

Sahel


Slide 3

Extraction of Phenological Variables:
- Simple: Annual mean / min / max / amplitude of NDVI
- Complex: start / end / length of green season(s)
- Often better inputs for classification
- Only feasible through longitudinal analysis (time series)
Monthly Mean NDVI
t1 t2

t3

0.8
0.7

Max = 0.7

0.6

NDVI2 = Min + 0.8(Max – Min) = 0.6

0.5

0.4
0.3

NDVI1 = Min + 0.2(Max – Min) = 0.3

0.2

Min = 0.2

0.1
0

0

3

6

9

12 15 18 21 24 27 30 33 36 39

Decades


Slide 4

Phenological Variables:
Examples from the “Global Land 1km AVHRR Data Set”
April 1992 - March 1993, Interrupted Goode Homolosine

Mean Annual NDVI

Seasonality Index SI
SI = [Range - Mean]/ [Range + Mean]


Slide 5

Phenological Variables:
Examples from the “Global Land 1km AVHRR Data Set”
April 1992 - March 1993, Interrupted Goode Homolosine

None (desert/ice)
Intermediate
Entire year

Length of Green Season

January
June
December
No Growing Season

Start of Green Season


Slide 6

Phenological Variables:
Examples from the “Global Land 1km AVHRR Data Set”
April 1992 - March 1993, Interrupted Goode Homolosine

Simple
Biome Classification
Bivariate Level Slice:
- Annual Mean NDVI
<0.1
< 0.17
< 0.35
< 0.45
< 0.55
> 0.55

<0.25

<0.5

>0.5

- Annual NDVI Range


Slide 7

LONGITUDINAL TIME SERIES ANALYSIS REQUIRED
• It adds a new dimension to the results of the transversal
analysis (per decade / day)
• At a given moment, áll information of a full year (36 x S10,
360 x S1) must be available simultaneously
Band
------1
2
3
4
5
6
7
8
9
10
11

BPP
-----2
2
2
2
1
1
1
1
1
1
2

Total

16

CONTENTS
VGT-SYNTHESIS
----------------BLUE
Reflectance
RED
Reflectance
NIR
Reflectance
SWIR
Reflectance
NDVI
Zenith
angle
of sun
Zenith
angle
of sensor
Azimuth
angle
of sun
Azimuth
angle
of sensor
Status map: errors in 4 bands, land, cloud, snow/ice
Time grid: minutes between pixel registration and
start of synthesis (LOG-file)

GLOBAL VGT-SYNTHESIS  600 Mb pixels x 16 byte/pix
 10 000 Mb  10 Gb
FULL YEAR CYCLE

S10: 360 Gb

S1: 3.6 Tb

TOO MUCH DATA  CLASSICAL SOLUTIONS:
• Temporal selection: select limited number of composites
• Spectral selection: only NDVI, …
• Spatial selection: - Extract/analyse specific study areas
- Work on degraded images


Slide 8

DEDICATED SCHEME FOR DATA REDUCTION
1. Radiometric Compression: 16  6 bytes (37.5%)
- Eliminate BLUE and NIR
- Rescale reflectances from 16 to 8 bit (0-250)
RED/SWIR: R = 0%…62.5% in steps of 0.25%
NIR:
R = 0%…83.3% in steps of 0.33%
- Values 251-255: special flags (saturation, error, ...)
- Status_out : Cloud + Snow/ice + Day_in_decade
- Combine 2 zenith angles in 1 byte (steps of 5°)
- Combine 2 azimuths in 1 byte (relative azimuth:0-180°)
 Output = 6 Byte-layers
2. Eliminate all the Water Pixels (25%)
- 134,134,736 land pixels left  Spatial context lost!
- Results stored in Pseudo-Images (PI)
 IDL/ENVI-images (Ncol=5000, Nrec=26827)
- All spectral (per-pixel) operations still feasible (via
IDL/ENVI): time series analysis, classification (!), ...
3. Improved Land/Sea-Mask
- VGT-mask: 5-10 sea pixels along coast (too much)
- Boreal regions in winter: confused with sea (status map)
4. Conversion to Equal-Area Projection (IGH):
- In: Plane carré of VGT (worst projection) at (1/112°)²
- Out: Interrupted Goode Homolosine (IGH) at 1x1km²
 REDUCTION: ± 10% without LOSS of DATA !
 FULL YEAR CYCLE: S10: 36 Gb S1: 360Gb


Slide 9

NORMAL IMAGES

PSEUDO-IMAGES

- Normal format
- Land and water

- Only land
- All in IGH-Projection
- Sorted by Region-ID

IGH-Y
Country-ID Raster
STEP 1a

111122223334444455555566

PI_ID
PI_X

1

3

Extract

5

PI_Y
STEP 1b

Inverse IGH-projection

2
4

PI_LON

6
0=sea

PI_LAT

IGH-X
Scan per Pixel
SPOT4-VGT Decadal Synthesis
- 11 HDF image layers
- 16 bytes/pixel
- LOG-File (geo-referencing)

Pixel Lon/Lat
Convert
STEP 2
Transversal Reduction

LAT

Col/Rec in HDF
Read HDF's

1

3

1

3

5

11 Input-Values

5

Filter

2
2

4
4

6

6 Output-Values

6

Output
LON
PI_RED
PI_NIR
Output Pseudo-Images
- 6 per decadal synthesis
- 6 bytes/pixel
- Repeat for 36 syntheses/year
 36 x 6 = 216 pseudo-images

PI_SWIR
PI_THETA
PI_AZIM

PI_MASK
STEP 3

- Normal Image Format
- IGH-Projection
- Limited number of final Images
- Limited disk space

STEP 4
Reconversion

Longitudinal Analysis

- All in PI-format
- Time series analysis
- Elimination of clouds
- Extraction of phenological variables


Slide 10

Example of IDL/ENVI-FORMATTED PSEUDO-IMAGES

Normal Images

Pseudo-Images

A

B

1

2

3

C
NORMAL IMAGES
A Land-See Mask (Inter. Goode Homolosine, 1x1km²)
B GTOPO30-DEM (Geographic Lon/Lat)
C VGT-S10, Dec.3 of May 1998, NIR (Geogr. Lon/Lat)
1
2
3
4

PSEUDO-IMAGES (only 134 135 000 land pixels)
Longitude of pixel centre (float)
Latitude of pixel centre (float)
Altitude (from B - Short Integer)
NIR of Dec.3 of May 1998 (from C - rescaled to Byte)

4


Slide 11

Example of IDL/ENVI-FORMATTED PSEUDO-IMAGES
1. PI_XY
IN: Land/Sea mask in Master System (IGH)
OUT: 2 master-PI’s with IGH-X/Y of pixel centres
2. PI_IGH
IN: 2 master-PI’s with IGH-X/Y of pixel centres
OUT: 2 master-PI’s with Lon/Lat of pixel centres
3. PI_EXTR
IN: Any image in IGH or Lon/Lat (+ master-PI’s)
OUT: PI-version of that image (Byte / Short Int / Float)
4. PI_VGT
IN: VGT-S10/S1 + master-PI’s
OUT: 6 Byte PI-images
5. PI_BACK
IN: Any previously created PI (+ master-PI’s)
OUT: Corresponding normal image in IGH
Option: selection of output window
6. PI_REDU
IN: Set of all VGT-PI’s (+ master-PI’s)
OUT: Corresponding set of normal images, IGH,
degraded resolution (33x33km²), systematic selection
7. CLEAN
IN: Set of 36 VGT-S10 images (normal or PI)
OUT: Cleaned NDVI-profiles
8. PHENO
IN: Set of 36 VGT-S10 images (normal or PI)
OUT: Cleaned NDVI-profiles


Slide 12

SET of DEGRADED IMAGES

RED

NIR

End of June 1988

SWIR

NORMAL IMAGES
- 36 decades x 6 = 216 images
- Global but degraded (33km x 33km)
- Npix = 1213x423 = 513 099  Total: 216 x 0.5 = 110 Mb
- Systematic pixel selection  original signatures
- Excellent data set to test performance of new procedures
on global scale


Slide 13

CONCLUSIONS
1. One Possible Pathway for Global Classification
- Transverse reduction of all VGT-images  PI’s
- Also extract external information:
DEM, …  additional classification variable
Regions  for post-processing (LC-statistics)
Existing classifications  Training / Validation
- Longitudinal analysis on PI-images:
Cleaning, elimination of bidirectional effects,
addition of phenological variables, improved VI’s,…
- Classification in PI-form
- Reconversion to normal image
2. Preliminary data enhancement via data reduction seems
indispensible
3. To be integrated in CTIV (?)
 Optional delivery of data in PI-form (better than ZIP)
 More users get access to global data
4. Lots of improvements possible:
other geo-systems, other output formats (now only ENVI +
IDRISI), streamlining of software,…
5. High radiometric resolution redundant