The Changing Faces in Effluent and Environmental Monitoring Douglas Wahl Exelon REMP Sensitivity   Seasonal Mixing of the Stratosphere and Troposphere Documented the Environmental Impact – Fallout from.

Download Report

Transcript The Changing Faces in Effluent and Environmental Monitoring Douglas Wahl Exelon REMP Sensitivity   Seasonal Mixing of the Stratosphere and Troposphere Documented the Environmental Impact – Fallout from.

Slide 1

The Changing Faces in Effluent and
Environmental Monitoring
Douglas Wahl
Exelon


Slide 2

REMP Sensitivity



Seasonal Mixing of the Stratosphere and
Troposphere
Documented the Environmental Impact
– Fallout from Nuclear Weapons Test
– Three Mile Island Unit 2 Accident in 1979
– Destruction of Chernobyl Reactor No. 4 in 1986



Radioactivity Passing
– From the Atmosphere and Rainfall
– To the Grass-Cow-Milk Pathway
– Through the Water Pathway


Slide 3

Demographic Changes


Change of Program Ownership
– Nuclear Generator
– NRC Inspections



Many of the New Owners
– Never Experienced a Significant Event in the
REMP
– Activity is < MDC



Most Programs 30+ Years in Existance


Slide 4

Knowledge Base


Being Lost by the Nuclear Generator
– Lack of Mentoring Program
– Bases not well Documented
– Major Reductions in Gaseous and Liquid
Effluents.
– Big Deal when
» Plant Related Activity is Found in the Environment
» Medical Isotopes are Found in REMP Samples


Slide 5

Knowledge Base


Ignored by the Nuclear Regulator
– Wanting Documentation on the Bases for
Establishing the REMP
– Changing Interpretation of the Program
Requirements



Where is the NRC’s Knowledge Base?


Slide 6

NRC Knowledge Base


Branch Technical Position Paper
– Revision 1 Issued in 1979
– Incorporated into NUREG 1301/1302



BTP Developed in part from the following:
– Reg. Guide 1.21, 4.1, 4.8, and 1.109
– NUREG 0472, 0473, and 0133


Slide 7

What was the World Like when
the BTP was Drafted?
The United States and Soviet Union had
Eliminated above Ground Testing of
Nuclear Weapons in 1963
 The French and Chinese Continued until
1980
 The Result of all these Tests was an
Atmosphere Polluted with Radioactive
Fallout



Slide 8

Summary of Above Ground Weapons Tests
No. of
Detonations

Years

Total Yield
Mt

United States

216

1945-1962

153.8

Soviet Union

214

1945-1962

281.6

United Kingdom

21

1952-1958

10.8

France

46

1960-1974

11.4

China

23

1964-1980

21.5

South Africa

1

1979

0.003

Nation

compiled by Wm. Robert Johnston http://www.johnstonsarchive.net/nuclear/atest00.html


Slide 9

What Did the Data Tell the Authors of the BTP?

Concentration of Sr-90 in Milk in the Philadelphia
Region, 1960 - 2002
45
40

(pCi/L)

35
30
25
20
15
10
5
0

60 9 62 9 64 9 66 9 68 9 70 9 72 9 74 9 76 9 78 9 80 9 82 9 84 9 86 9 88 9 90 9 92 9 94 9 96 9 98 0 00
9
1
1
1 1
1
1
1
1 1
1
1
1 1
1
1
1
1 1
1
1
2

Year

Source EPA


Slide 10

What Did the Data Tell the Authors of the BTP?
Average Monthly Gross Beta Activity in Air 1966 - 2005,
Peach Bottom Atomic Power Station
1
0.9
0.8

0.6
0.5
0.4
0.3
0.2
0.1
0

19
66
19
68
19
70
19
72
19
74
19
76
19
78
19
80
19
82
19
84
19
86
19
88
19
90
19
92
19
94
19
96
19
98
20
00
20
02
20
04

pCi/m3

0.7

Year


Slide 11

Differences Between the 60’s/70’s and Today


60’s and 70’s



2006

– Maximum Sr-90 concentration was
39 pCi/L

– Sr-90 < 2 pCi/L LOD

– Maximum Monthly Average Gross
Beta in Air was 0.92 pCi/m3

– Maximum Concentration of Gross
Beta in Air < 0.07 pCi/ m3

– Average Monthly Gross Beta
Concentration in Air was 0.14 pCi/m3

– Average Concentration of Gross Beta
in Air < 0.04 pCi/m3

Clearly the Drafters of the BTP Never Foresaw that the Atmosphere
Would Clean Itself Up and Return to Low Activity State


Slide 12

Changing Interpretation of Program
Requirements



Dose Calculations from Contributions of
Transuranics
No Clear Understanding of Importance of
Transuranics to Overall Dose
– Is it a Test of the Program Owner Knowledge Level?
– Is it a “Failure to Perform an Adequate Survey”?
– Transuranic Dose Factors not Available in Reg. Guide
1.109



Transuranics Contribute an Insignificant Amount
to the Overall Dose from Effluents


Slide 13

Impact of Transuranics on Dose Contribution
Radionuclide

AGi
(Relative Activity
to Groundwater)

Solubility,
Si

Transport,
Ti

Relative Dose,
Hi

Total Relative
Dose Potential,
Ri

1

Sr-90

9.00E+00

4.00E-01

6.70E-02

2.20E+03

5.31E+02

2

Cs-137

1.30E+01

1.00E+00

3.70E-03

7.80E+02

3.75E+01

3

Co-60

1.11E+00

1.00E+00

1.70E-02

4.20E+02

7.93E+00

4

H-3

1.00E+00

1.00E+00

1.00E+00

1.00E+00

1.00E+00

5

Cs-134

1.80E-01

1.00E+00

3.70E-03

1.10E+03

7.33E-01

6

I-129

5.50E-06

1.00E+00

1.00E+00

4.30E+03

2.37E-02

7

Ni-63

2.50E-01

1.00E+00

3.30E-03

9.00E+00

7.43E-03

8

C-14

1.25E-04

1.00E+00

1.00E+00

3.30E+01

4.13E-03

9

Pu-238

2.60E-01

3.00E-05

1.80E-03

5.00E+04

7.02E-04

10

Am-241

1.50E-01

7.00E-05

5.30E-04

5.70E+04

3.17E-04

11

Fe-55

4.00E-03

1.00E+00

6.10E-03

9.50E+00

2.32E-04

12

Pu-241

3.90E+00

3.00E-05

1.80E-03

1.10E+03

2.32E-04

13

Pu-240

3.10E-02

3.00E-05

1.80E-03

5.50E+04

9.21E-05

14

Pu-239

1.80E-02

3.00E-05

1.80E-03

5.50E+04

5.35E-05

16

Nb-93m

1.90E-03

4.00E-01

6.30E-03

8.20E+00

3.93E-05

15

Cs-135

9.50E-05

1.00E+00

3.70E-03

1.10E+02

3.87E-05

17

Cm-244

1.80E-01

2.00E-05

2.50E-04

3.20E+04

2.88E-05

18

Cd-113m

1.20E-03

3.00E-04

2.50E-02

2.50E+03

2.25E-05

19

Nb-94

8.10E-05

4.00E-01

6.30E-03

1.10E+02

2.25E-05

20

Ni-59

1.90E-03

1.00E+00

3.30E-03

3.30E+00

2.07E-05

Relative
Rank

Groundwater Monitoring Guidance for Nuclear Power Plants. EPRI, Palo Alto, CA: 2005


Slide 14

Changing Interpretation of Program
Requirements





REMP Programs are Well Established
The BTP is Ambiguous in Many Requirements
– Subject to Different Interpretations
– Forcing Changes in these Programs
The Following Examples Demonstrate where
Potential Confusion Exits in the BTP


Slide 15

Example 1
Given the following BTP requirements for an acceptable air monitoring program



Three samples (A1-A3) from close to the three SITE BOUNDARY locations,
in different sectors, of the highest calculated annual average ground-level
D/Q

What is meant by “Close to the three site boundary locations… with the highest
calculated annual average ground-level D/Q”?
1.

2.

Does it mean that air stations have to be relocated each year if the annual
D/Q values change or is historical data based on long term (3-10 year)
averaging acceptable?
Must air stations be located at the highest D/Q points or are the highest
three D/Q sectors determined by averaging the data and then locating the
sampling equipment near the site boundary where other environmental
factors such as accessibility, tree cover, location to power lines acceptable?


Slide 16

Comparison of D/Q values (1/m 2) from Vent Releases out to 5200 Meters
Distance
Meters
366
396
488
600
640
700
823
884
945
1000
1098
1159
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4300
4600
4900
5200
Average
Max

NNE

NE

NNE

E

ESE

2.73E-09
2.12E-09
1.64E-09
1.51E-09
1.34E-09
1.07E-09
9.70E-10
8.82E-10
8.14E-10

1.34E-09
1.22E-09
9.51E-10
7.32E-10
6.73E-10
5.96E-10
4.76E-10
4.30E-10
3.90E-10
3.59E-10

2.23E-09
2.05E-09
1.73E-09
1.40E-09
1.30E-09
1.17E-09
9.51E-10
8.65E-10
7.90E-10
7.30E-10

3.33E-09
2.79E-09
2.28E-09
2.12E-09
1.92E-09
1.57E-09
1.43E-09
1.31E-09
1.21E-09

6.55E-09
5.19E-09
4.06E-09
3.75E-09
3.34E-09
2.70E-09
2.45E-09
2.24E-09
2.07E-09

SE

SSE

S

2.83E-09
2.56E-09
2.34E-09
2.16E-09

SSW

6.23E-10
4.94E-10
4.02E-10
3.33E-10
2.81E-10
2.41E-10
2.09E-10
2.74E-10
2.15E-10
1.88E-10
1.68E-10
1.50E-10
1.35E-10
1.23E-10
1.11E-10
9.74E-11
8.59E-11
7.63E-11
6.82E-11

2.73E-10
2.15E-10
1.74E-10
1.58E-10
1.36E-10
1.16E-10
1.29E-10
1.25E-10
1.10E-10
7.83E-11
6.96E-11
6.22E-11
5.60E-11
5.06E-11
4.60E-11
4.02E-11
3.54E-11
3.15E-11
2.81E-11

5.60E-10
4.42E-10
3.58E-10
2.96E-10
2.48E-10
2.16E-10
3.08E-10
2.67E-10
2.34E-10
2.07E-10
1.84E-10
1.64E-10
1.48E-10
1.34E-10
1.22E-10
1.02E-10
9.34E-11
8.83E-10
7.40E-11

9.36E-10
7.43E-10
6.04E-10
5.00E-10
4.21E-10
3.59E-10
6.29E-10
4.77E-10
4.18E-10
3.70E-10
3.29E-10
2.94E-10
2.65E-10
2.40E-10
2.18E-10
1.90E-10
1.68E-10
1.49E-10
1.33E-10

1.59E-09
1.27E-09
1.03E-09
8.59E-10
7.26E-10
6.21E-10
5.38E-10
4.70E-10
4.15E-10
3.69E-10
3.30E-10
2.99E-10
2.81E-10
2.93E-10
4.10E-10
3.64E-10
2.45E-10
2.17E-10
1.94E-10

2.58E-09
1.86E-09
1.48E-09
1.21E-09
1.01E-09
8.49E-10
7.27E-10
6.29E-10
5.51E-10
4.86E-10
4.32E-10
3.86E-10
3.48E-10
3.15E-10
2.86E-10
2.50E-10
2.21E-10
1.96E-10
1.75E-10

2.59E-09
1.88E-09
1.49E-09
1.21E-09
1.01E-09
8.48E-10
7.25E-10
6.27E-10
5.48E-10
4.83E-10
4.30E-10
3.84E-10
3.46E-10
3.13E-10
2.85E-10
2.49E-10
2.20E-10
1.95E-10
1.75E-10

1.02E-09
9.14E-10
6.96E-10
5.48E-10
4.44E-10
3.67E-10
3.09E-10
2.64E-10
2.28E-10
1.99E-10
1.75E-10
1.56E-10
1.39E-10
1.25E-10
1.13E-10
1.03E-10
9.00E-11
7.94E-11
7.06E-11
6.32E-11

8.80E-10
7.88E-10
6.52E-10
6.22E-10
5.58E-10
4.25E-10
3.34E-10
2.71E-10
2.24E-10
1.19E-10
1.61E-10
1.39E-10
1.21E-10
1.07E-10
9.46E-11
8.46E-11
7.61E-11
6.89E-11
6.26E-11
5.48E-11
4.83E-11
4.30E-11
3.85E-11

6.19E-10
2.73E-09

3.14E-10
1.34E-09

6.29E-10
2.23E-09

9.07E-10
3.33E-09

1.53E-09
6.55E-09

1.04E-09
2.83E-09

8.49E-10
2.97E-09

3.05E-10
1.02E-09

2.60E-10
8.80E-10

2.97E-09

SW

WSW

W

WNW

NW

NNW

N

3.23E-09
2.47E-09
1.88E-09
1.72E-09
1.52E-09
1.21E-09
1.09E-09
9.90E-10
9.11E-10
7.94E-10
7.63E-10
6.96E-10
5.51E-10
4.48E-10
3.72E-10
3.14E-10
2.69E-10
2.32E-10
2.03E-10
1.79E-10
1.59E-10
1.53E-10
1.52E-10
1.38E-10
1.24E-10
1.13E-10
9.85E-11
8.69E-11
7.72E-11
6.91E-11
7.00E-10
3.23E-09

3.22E-10
3.04E-10
2.94E-10
2.49E-10
2.38E-10
2.13E-10
1.54E-10
1.21E-10
9.75E-11
8.04E-11
6.76E-11
5.76E-11
4.97E-11
4.34E-11
3.82E-11
3.39E-11
3.03E-11
2.73E-11
2.47E-11
2.24E-11
1.96E-11
1.73E-11
1.54E-11
1.38E-11

1.32E-10
1.27E-10
1.09E-10
1.04E-10
1.04E-10
8.07E-11
5.92E-11
4.81E-11
3.99E-11
3.36E-11
2.87E-11
2.49E-11
2.17E-11
1.92E-11
1.02E-11
1.52E-11
1.37E-11
1.24E-11
1.13E-11
9.87E-12
8.71E-12
7.75E-12
6.93E-12

1.12E-10
1.02E-10
8.58E-11
8.24E-11
6.97E-11
5.38E-11
4.28E-11
3.49E-11
2.90E-11
2.45E-11
2.10E-11
1.81E-11
1.59E-11
1.40E-11
1.25E-11
1.11E-11
1.00E-11
9.08E-12
8.26E-12
7.23E-12
6.38E-12
5.67E-12
5.73E-12

2.25E-10
2.06E-10
1.79E-10
1.72E-10
1.45E-10
1.12E-10
8.86E-12
7.21E-12
5.98E-12
5.04E-12
4.31E-12
3.73E-12
3.26E-12
2.87E-12
2.55E-12
2.28E-12
2.05E-12
1.86E-12
1.69E-12
1.48E-12
1.30E-12
1.16E-12
1.03E-12

8.32E-10
7.45E-10
6.79E-10
5.83E-10
5.58E-10
5.05E-10
4.37E-10
3.17E-10
2.58E-10
2.13E-10
1.80E-10
1.54E-10
1.33E-10
1.16E-10
1.02E-10
9.07E-11
8.11E-11
7.29E-11
6.60E-11
6.00E-11
5.24E-11
4.62E-11
4.10E-11
3.67E-11

1.10E-09
9.84E-10
7.51E-10
6.65E-10
5.94E-10
5.40E-10
4.61E-10
4.40E-10
4.64E-10
3.33E-10
2.64E-10
2.15E-10
1.78E-10
1.50E-10
1.28E-10
1.11E-10
9.68E-11
8.53E-11
7.58E-11
6.77E-11
6.10E-11
5.51E-11
5.01E-11
4.38E-11
3.86E-11
3.43E-11
3.07E-11

1.06E-10
3.22E-10

4.47E-11 3.40E-11
1.32E-10 1.12E-10

4.76E-11
2.25E-10

2.65E-10
8.32E-10

2.97E-10
1.10E-09


Slide 17

Comparison of D/Q values (1/m 2 ) from Vent Releases out to
Distance
Meters
NNE
NE
NNE
E
366
1.34E-09 2.23E-09
396
2.73E-09 1.22E-09 2.05E-09 3.33E-09
488
2.12E-09 9.51E-10 1.73E-09 2.79E-09
600
1.64E-09 7.32E-10 1.40E-09 2.28E-09
640
1.51E-09 6.73E-10 1.30E-09 2.12E-09
700
1.34E-09 5.96E-10 1.17E-09 1.92E-09
823
1.07E-09 4.76E-10 9.51E-10 1.57E-09
884
9.70E-10 4.30E-10 8.65E-10 1.43E-09
945
8.82E-10 3.90E-10 7.90E-10 1.31E-09
1000
8.14E-10 3.59E-10 7.30E-10 1.21E-09
1098
1159
1200
6.23E-10 2.73E-10 5.60E-10 9.36E-10
1400
4.94E-10 2.15E-10 4.42E-10 7.43E-10
1600
4.02E-10 1.74E-10 3.58E-10 6.04E-10
Average
Max

1.22E-09
2.73E-09

6.02E-10
1.34E-09

1.12E-09
2.23E-09

1.69E-09
3.33E-09

1600 Meters
ESE
6.55E-09
5.19E-09
4.06E-09
3.75E-09
3.34E-09
2.70E-09
2.45E-09
2.24E-09
2.07E-09

SE

SSE

S

2.83E-09
2.56E-09
2.34E-09
2.16E-09

SSW

1.59E-09
1.27E-09
1.03E-09

2.58E-09
1.86E-09
1.48E-09

2.59E-09
1.88E-09
1.49E-09

1.02E-09
9.14E-10
6.96E-10
5.48E-10

8.80E-10
7.88E-10
6.52E-10
6.22E-10
5.58E-10
4.25E-10
3.34E-10

3.02E-09
6.55E-09

2.26E-09
2.83E-09

2.23E-09
2.97E-09

7.94E-10
1.02E-09

6.08E-10
8.80E-10

2.97E-09

SW

WSW

W

WNW

NW

NNW

N
3.23E-09
2.47E-09
1.88E-09
1.72E-09
1.52E-09
1.21E-09
1.09E-09
9.90E-10
9.11E-10
7.94E-10
7.63E-10
6.96E-10
5.51E-10
4.48E-10
1.31E-09
3.23E-09

3.22E-10
3.04E-10
2.94E-10
2.49E-10
2.38E-10
2.13E-10
1.54E-10
1.21E-10

1.32E-10
1.27E-10
1.09E-10
1.04E-10
1.04E-10
8.07E-11
5.92E-11

1.12E-10
1.02E-10
8.58E-11
8.24E-11
6.97E-11
5.38E-11
4.28E-11

2.25E-10
2.06E-10
1.79E-10
1.72E-10
1.45E-10
1.12E-10
8.86E-12

8.32E-10
7.45E-10
6.79E-10
5.83E-10
5.58E-10
5.05E-10
4.37E-10
3.17E-10

1.10E-09
9.84E-10
7.51E-10
6.65E-10
5.94E-10
5.40E-10
4.61E-10
4.40E-10
4.64E-10
3.33E-10
2.64E-10

2.37E-10
3.22E-10

1.02E-10
1.32E-10

7.84E-11
1.12E-10

1.50E-10
2.25E-10

5.82E-10
8.32E-10

6.00E-10
1.10E-09


Slide 18

Example 2
Given the following BTP requirements for an acceptable ingestion (milk)
monitoring program


Samples from milking animals in three locations (1a1-1a3) within 5 km distance having the highest
dose potential

What is meant by “highest dose potential”?
1.

2.

Is it strictly defined as highest D/Q, that is given the data presented above, the
cows must be located in the E, ESE and N sectors at 396 meter from the vents?
Pathway must be available to have a dose potential. That is if sector E has no
cows then regardless of D/Q factor there is zero dose potential.

The BTP requirements continue:

If there are none, then one sample from milking animals in each of three areas (1a1-1a3) between
5 to 8 km distant where doses are calculated to be greater than 1 mrem per year.

Clearly, the writers of the BTP did not expect the industry to minimize their gaseous
releases.


Slide 19

Example 2
Given the following BTP requirements for an acceptable ingestion (milk)
monitoring program
The BTP requirements for the ingestion pathway continues with Food Products:


Samples of three different kinds of broad leaf vegetation grown nearest each of two
different offsite locations of highest predicted annual average ground level D/Q if milk
sampling is not performed.

Recent Inspection interpreted this requirement to mean that cows must be housed at the
highest D/Q location or vegetation sampling must be performed. The cows must be
located in the E, ESE and N sectors at 396 meter from the vents.

At many sites, because there are no gardens in the area, they substitute tree leaves
1.
How is one to interpret activity found on tree leaves? What is the consumption rate of
an oak leaf?
2.
What are we really trying to measure?
If it is deposition, then grass sampling would provide as good a measure as
tree leaves. Data could be reported in pCi/m2


Slide 20

Example 3
The BTP LLD table as detailed in NUREG 1301/1302 contains two subtle changes
TABLE 4.12-1
DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYS (1) (2)
(3)

ANALYSIS
Gross
Beta
H-3

WATER
(pCi/L)
4

LOWER LIMIT OF DETECTION (LLD)
AIRBORNE
PARTICULATE
FISH
OR GASES
(pCi/kg,
MILK
3
(pCi/m )
wet)
(pCi/L)

FOOD
PRODUCTS SEDIMENT
(pCi/kg,
(pCi/kg,
wet}
dry)

0.01

2000*

Mn-54

15

130

Fe-59
Co-58,60

30
15

260
130

Zn-65

30

260

Zr-Nb-95

15

I-131

1**

0.07

Cs-134
Cs-137

15
18

0.05
0.06

Ba-La-140

15

130
150

1

60

15
I8

60
80

15

* If no drinking water pathway exists, a value of 3000 pCi/L may be used.
** If no drinking water pathway exists, a value of 15 pCi/L may be used.

150
180


Slide 21

Summary


Are the Requirements of Our Primary
Guidance Document the BTP Still
Relevant?



Existing Requirements Need Clarification


Slide 22

Conclusion
Words have no meaning. People have meaning.




Interpretation of these Requirements should not
be left to a Few.
The NRC with the Membership of this Workshop
should Remove the Ambiguity Present in the
BTP and if Necessary Develop New
Requirements for the Next Generation of
Radiological Environmental Monitoring Program.