概 率 方 法 博士 E-mail: [email protected] 数学与计算科学学院 中山医学院 几个例子 Ramsey数;Buffon投针;素因子的个数 一些符号 Landan渐进符号;概率符号 概率在数论中的应用 Ramsey数;Sum-free集合问题 Buffon投针问题的解(几何方法) 期望的线性性质 Buffon投针(概率方法);不平衡的灯 Chebyshev不等式 素因子的个数;不同和问题 Ramsey数 R(k,l) (1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 用a,b,c,d,e,f六点表示六个人。如果两人互相认识,就在相应顶点 间连一条红边,如果互相不认识,就连上一条蓝边。这样原问题 就相当于对于任意的双色完全图K6中必存在一个单色三角形。 a f e d b c Ramsey数 R(k,l) R(k,k)(1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 不失一般性, 考虑以a端点的5条边。因为只有两种颜色,所以, 至少有3边同色。不妨设ab, ac,ad同为蓝色。 a a f f e e d b c d b c Ramsey数 R(k,l) R(k,k)(1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 在b,c,d三者间,若有任意 一条为蓝色,例如bd为蓝色, 则abd构成蓝色三角形。 在b,c,d三者间,若没有一 条为蓝色,则他们之间均是 红色连线,此时bcd就会构成 红色三角形。 a a f f e d b c e d b c Ramsey数 R(k,l) (2) 给定两个自然数k和l,是否存在n,使得任意一个双 色完全图Kn,要么含有红色的完全子图Kk,要么含有蓝 色的完全子图Kl?而称具有这样性质的最小自然数n为 Ramsey数,记作R(k,l)。 我们关心的是R(k,l)的值或者上下界。在这里,我们 只简单讨论Ramsey数R(k,k)的下界。 (k,l)=(3,3), Ramsey数 R(3,3)=6。 这是因为:K5中可以 不出现单色三角形。 Buffon 投针 假设在平面上画上间距为d 的平行线,现在随‘ 机投掷长 度为L的的针,求针与其中 至少˜一条平行线相交的概率。 当L≤d时,所求的概率是 2L/πd。 素因子的个数 1920年, Hardy 和.

Download Report

Transcript 概 率 方 法 博士 E-mail: [email protected] 数学与计算科学学院 中山医学院 几个例子 Ramsey数;Buffon投针;素因子的个数 一些符号 Landan渐进符号;概率符号 概率在数论中的应用 Ramsey数;Sum-free集合问题 Buffon投针问题的解(几何方法) 期望的线性性质 Buffon投针(概率方法);不平衡的灯 Chebyshev不等式 素因子的个数;不同和问题 Ramsey数 R(k,l) (1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 用a,b,c,d,e,f六点表示六个人。如果两人互相认识,就在相应顶点 间连一条红边,如果互相不认识,就连上一条蓝边。这样原问题 就相当于对于任意的双色完全图K6中必存在一个单色三角形。 a f e d b c Ramsey数 R(k,l) R(k,k)(1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 不失一般性, 考虑以a端点的5条边。因为只有两种颜色,所以, 至少有3边同色。不妨设ab, ac,ad同为蓝色。 a a f f e e d b c d b c Ramsey数 R(k,l) R(k,k)(1) R(3,3): 证明,任意六个人中,总有三个人互相认识, 或者互相不认识。 ----- 1947年匈牙利数学竞赛 在b,c,d三者间,若有任意 一条为蓝色,例如bd为蓝色, 则abd构成蓝色三角形。 在b,c,d三者间,若没有一 条为蓝色,则他们之间均是 红色连线,此时bcd就会构成 红色三角形。 a a f f e d b c e d b c Ramsey数 R(k,l) (2) 给定两个自然数k和l,是否存在n,使得任意一个双 色完全图Kn,要么含有红色的完全子图Kk,要么含有蓝 色的完全子图Kl?而称具有这样性质的最小自然数n为 Ramsey数,记作R(k,l)。 我们关心的是R(k,l)的值或者上下界。在这里,我们 只简单讨论Ramsey数R(k,k)的下界。 (k,l)=(3,3), Ramsey数 R(3,3)=6。 这是因为:K5中可以 不出现单色三角形。 Buffon 投针 假设在平面上画上间距为d 的平行线,现在随‘ 机投掷长 度为L的的针,求针与其中 至少˜一条平行线相交的概率。 当L≤d时,所求的概率是 2L/πd。 素因子的个数 1920年, Hardy 和.

概 率 方 法
博士
E-mail: [email protected]
数学与计算科学学院
中山医学院
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
Ramsey数 R(k,l) (1)
R(3,3):
证明,任意六个人中,总有三个人互相认识,
或者互相不认识。
----- 1947年匈牙利数学竞赛
用a,b,c,d,e,f六点表示六个人。如果两人互相认识,就在相应顶点
间连一条红边,如果互相不认识,就连上一条蓝边。这样原问题
就相当于对于任意的双色完全图K6中必存在一个单色三角形。
a
f
e
d
b
c
Ramsey数 R(k,l)
R(k,k)(1)
R(3,3):
证明,任意六个人中,总有三个人互相认识,
或者互相不认识。
----- 1947年匈牙利数学竞赛
不失一般性, 考虑以a端点的5条边。因为只有两种颜色,所以,
至少有3边同色。不妨设ab, ac,ad同为蓝色。
a
a
f
f
e
e
d
b
c
d
b
c
Ramsey数 R(k,l)
R(k,k)(1)
R(3,3):
证明,任意六个人中,总有三个人互相认识,
或者互相不认识。
----- 1947年匈牙利数学竞赛
在b,c,d三者间,若有任意
一条为蓝色,例如bd为蓝色,
则abd构成蓝色三角形。
在b,c,d三者间,若没有一
条为蓝色,则他们之间均是
红色连线,此时bcd就会构成
红色三角形。
a
a
f
f
e
d
b
c
e
d
b
c
Ramsey数 R(k,l) (2)
给定两个自然数k和l,是否存在n,使得任意一个双
色完全图Kn,要么含有红色的完全子图Kk,要么含有蓝
色的完全子图Kl?而称具有这样性质的最小自然数n为
Ramsey数,记作R(k,l)。
我们关心的是R(k,l)的值或者上下界。在这里,我们
只简单讨论Ramsey数R(k,k)的下界。
(k,l)=(3,3), Ramsey数
R(3,3)=6。
这是因为:K5中可以
不出现单色三角形。
Buffon 投针
假设在平面上画上间距为d
的平行线,现在随‘
机投掷长
度为L的的针,求针与其中
至少˜一条平行线相交的概率。
当L≤d时,所求的概率是
2L/πd。
素因子的个数
1920年, Hardy 和 Ramanujan证明了“几乎
所有”n的素因子的个数“非常靠近”ln ln n 。
素因子的个数
1920年, Hardy 和 Ramanujan证明了“几乎
所有”n的素因子的个数“非常靠近”ln ln n 。
严格的数学表述如下:
令 (n) 为所有n的素因子的个数和让 (n) 任意缓
慢的趋向无穷大。那么
|{x [1, n]:| ( x)  ln ln n | (n) ln ln n}| o(n)
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
Landan 渐进符号
令n为一个正变量,f(n)与g(n)为n的实函数。
g (n)  O( f (n))
• 表示f是非负的,并且对于所有的n,存在常数C,使得|g(n)|≤C·f(n)
g (n)  o( f (n))
• 表示f是非负的,并且当n趋于无穷时,g(n)/f(n)趋向于0
g (n)  w( f (n))
• 表示f(n)=o(g(n))
g ( n)
f ( n)
• 表示f(n)=(1+o(1))·g(n)
概率符号
假设E为某个概率空间(有限)的一个事件:
• P(A)表示事件A发生的概率。
• I(A)表示事件A的示性函数,如果A发生则I(A)=1,若不发生则为0。
假设X是一个离散的随机变量:
• E(X)=∑x[x·P(X=x)],定义为其期望。
• Var(X)=E(X-EX)2=EX2-(EX)2,定义为其方差。
而后有E(I(A))=P(A),Var(I(A))=P(A)-P(A)2。
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
Ramsey数. R(k,k)的下确界
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
Ramsey数. R(k,k)的下确界
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
证明:在一个双色完全图 K n 中,考虑由两种颜色(红或蓝)等
可能的对边着色。对于任一个具有 k个顶点的集合 R ,令 AR 为
“由 R 诱导的 K n 的子图为单色的事件”。那么,
1Ck2
P( AR )  2
Ramsey数. R(k,k)的下确界
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
证明:在一个双色完全图 K n 中,考虑由两种颜色(红或蓝)等
可能的对边着色。对于任一个具有 k个顶点的集合 R ,令 AR 为
“由 R 诱导的 K n 的子图为单色的事件”。那么,
1Ck2
P( AR )  2
又因为在 K n中这样的R有 C nk 个,所以至少有一个事件 AR 发生
1Ck2
k
 1 。这样,没有一个事件 AR 会发生的
的概率最多为 Cn  2
概率为正,也就是说,存在一个不含有单色 K k 的双色完全图
K n 。于是有 R(k , k )  n 。
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
注意到 k  3 时,取 n   2
1Ck2
C 2
k
n
k /2
 ,满足
21k /2 n k

 k 2 /2  1
k! 2
因此,R(k , k )  2k /2  。


证毕
1Ck2
定理1: 如果 C  2
k
n
 1 ,那么 R(k , k )  n 。
这样,对所有的 k  3 ,有:R(k , k )   2k /2 
注意到 k  3 时,取 n   2
1Ck2
C 2
k
n
k /2
 ,满足
21k /2 n k

 k 2 /2  1
k! 2
因此,R(k , k )  2k /2  。


证毕
这个例子体现了概率方法的精髓。我们并没有直接通过构
造性或确定性的方法来证明单色子图的存在,而是以一种
非确定性的方法来处理问题。
注:Erdős(埃尔德什)是第一个理解这种方法并成功的运用以解决了许
多应用问题的人。
Sum-free集合问题
定义:一个可换群G的子集 A 被称为sum-free(和自由)的,
当且仅当其不存在三个元素x,y,z,使得x+y=z。
换言之,( A  A)  A   。
定理[Erdős 1965]:每一个由n个非零整数所组成的集合 B ,
存在一个sum-free的子集 A ,并且子集 A 的大小(阶)比 B
的三分之一要大: | A | | B | 3 。
Sum-free集合问题
定义:一个可换群G的子集 A 被称为sum-free(和自由)的,
当且仅当其不存在三个元素x,y,z,使得x+y=z。
换言之,( A  A)  A   。
定理[Erdős 1965]:每一个由n个非零整数所组成的集合 B ,
存在一个sum-free的子集 A ,并且子集 A 的大小(阶)比 B
的三分之一要大: | A | | B | 3 。
证明:令 p  3k  2 为一个素数,使得 p  2max{| bi |}in1 ,同
时令C  {k  1, k  2,..., 2k  1}
则 C 显然是循环群 Z p 的一个sum-free子集,而且,
|C |
k 1 1


p  1 3k  1 3
根据 [1, p  1] 上的均匀分布选取一个正整数 x ,定义
di  xbi (mod p)
i  1,...n
Sum-free集合问题
对于每个固定的 i ,当 x 遍历所有1至p-1的整数时,d i 也遍历所有 Z p
中的非零元素。这样 P(di  C )  | C | ( p  1)  1/ 3 。
因此,使得 d i 属于C 的个数的期望  n / 3 。
Sum-free集合问题
对于每个固定的 i ,当 x 遍历所有1至p-1的整数时,d i 也遍历所有 Z p
中的非零元素。这样 P(di  C )  | C | ( p  1)  1/ 3 。
因此,使得 d i 属于C 的个数的期望  n / 3 。
由此可知,存在一个 x 和 B 的一个子集 A( A 的阶 n / 3),使得:
对所有的 a  A ,xa(mod p)  C 。这样A 显然是sum-free的,这因为如
果有 a1 , a2 , a3  A ,并满足 a1  a2  a3 ,那么,必有 xa1  xa2  xa3 (mod p)
但这与C 是Z p 的sum-free子集这一事实所矛盾。故完成证明。
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
Buffon 投针的计算(几何方法)
由于针的长度小于线的间距,所以必有一条平行线与针相邻但不相交。
我们将这个线作为参照线(南端的线)。
南端线= 参照线
y
D
现在我们有:

d
L
Measure to the closest line
north of the measuring
end
d  L sin 
0  
0 yD
关系式
独立均匀分布
独立均匀分布
如果 y  L sin  ,则表示出现了相交。
Buffon 投针的计算(几何方法)
D
左图是 y与 的联合分布图,其中
红色区域表示 y  L sin  ,即能
够相交,而白色区域则表示没有
相交。最后只需要计算出红色区
域所占整体区域的比例即可。
y  L sin 
0

红色区域  L  sin  d
0

 L( cos   cos 0)
 2L
总区域  D
Buffon 投针的计算(几何方法)
D
左图是 y与 的联合分布图,其中
红色区域表示 y  L sin  ,即能
够相交,而白色区域则表示没有
相交。最后只需要计算出红色区
域所占整体区域的比例即可。
y  L sin 
0

红色区域  L  sin  d
0

总区域  D
 L( cos   cos 0)
 2L
红区域 2 L
Pr(相交) 

总区域 D
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
期望的线性性质
令X 1 ,..., X n 为随机变量,X  c1 X 1  ...  cn X n 。
那么 E ( X )  c1 E ( X 1 )  ...  cn E ( X n )
这个期望的线性性质的威力在于其并没有受到 X i
之间是否独立的限制。
在应用中,经常使用这样的事实:在样本空间中
比存在一个点使得:
X  E[ X ] 或 X  E[ X ]
在下面的例子中可以看到这个方法的使用。
Buffon 投针的计算(概率方法)
现在我们用另一种思维来看待Buffon投针的问题。
平行线的间距 d 已经给定。对于一个长度是 L1 的针,
定义一个随机变量 X1 ,其为此针与平行线相交的点数。
由于 L1  d ,所以 X1以概率 P0 取值0,以概率 P1 取值1。
P1 既是我们需要求的值,这也同时是 X1 的期望:
E[ X1 ]  0P0  1P1  P1
Buffon 投针的计算(概率方法)
现在我们用另一种思维来看待Buffon投针的问题。
平行线的间距 d 已经给定。对于一个长度是 L1 的针,
定义一个随机变量 X1 ,其为此针与平行线相交的点数。
由于 L1  d ,所以 X1以概率 P0 取值0,以概率 P1 取值1。
P1 既是我们需要求的值,这也同时是 X1 的期望:
E[ X1 ]  0P0  1P1  P1
接下来我们再找一根针,长度为 L2 ,将其与先前的那
根针头尾连接起来,并保持活动不固定死。类似的依
然可以定义一个随机变量 X 2 。
虽然 X1 与X 2 不独立,但是它们的期望依然满足线性性
质:
E[ X1  X 2 ]  E[ X1 ]  E[ X 2 ]
Buffon 投针的计算(概率方法)
由于上述期望的线性性质,两根针无论构成什么样子的链接方
式,其与平行线的交点个数的期望是不变的。
而多根针头尾连在一起依然保持了这样的性质。同时多根针可
以组成任意的形状。
另一方面,容易看出 E[ X1 ] 是与 L1 有关系的,而在针长度的合
理范围内,它们成线性关系:
E[ X1 ]  f ( L1 )  rL1
因此接下来我们所要做的事情就是确定 r 的大小。
Buffon 投针的计算(概率方法)
由于上述期望的线性性质,两根针无论构成什么样子的链接方
式,其与平行线的交点个数的期望是不变的。
而多根针头尾连在一起依然保持了这样的性质。同时多根针可
以组成任意的形状。
另一方面,容易看出 E[ X1 ] 是与 L1 有关系的,而在针长度的合
理范围内,它们成线性关系:
E[ X1 ]  f ( L1 )  rL1
因此接下来我们所要做的事情就是确定 r 的大小。
之后我们考虑形状固定的铁丝 C ,其长度为 L ,定义 Y 为铁丝
与平行线相交的交点个数。可以将这个铁丝近似想象成很多针
所连接起来的,所以 Y 将会近似等于 X1  ...  X n ,而取其极限,
我们得到:
E[Y ]  rL
Buffon 投针的计算(概率方法)
最后,为了求解出 r 的大小,我们只需要选取适当形状的铁丝
来进行求解。
令铁丝 C 为一个圆圈,其直径为 d 。显然我们有:
E[Y ]  2,
L  d
代入到公式 E[Y ]  rL 中,2  r d ,解得
r  2 / ( d )
Buffon 投针的计算(概率方法)
最后,为了求解出 r 的大小,我们只需要选取适当形状的铁丝
来进行求解。
令铁丝 C 为一个圆圈,其直径为 d 。显然我们有:
E[Y ]  2,
L  d
代入到公式 E[Y ]  rL 中,2  r d ,解得
r  2 / ( d )
所以,对于一个针而言,我们有
2L
p1  E[ X 1 ]  rL1 
d
证毕
不平衡的灯
我们先来看一个定理。
定理:令 aij  1 ,1  i, j  n ,则存在 xi , y j  1 ,1  i, j  n
使得
n
n
 ai j xi y j  (
i 1 j 1
2

 o(1))  n3/2
不平衡的灯
我们先来看一个定理。
定理:令 aij  1 ,1  i, j  n ,则存在 xi , y j  1 ,1  i, j  n
使得
n
n
 ai j xi y j  (
i 1 j 1
2

 o(1))  n3/2
现在我们针对此定理给出一个现实生活中的解释:假若按
照 n  n 的矩阵形式来摆放灯泡,每一个灯泡要么是亮着
的(aij  1),要么是熄灭的(aij  1)。同时存在着控
制同一排或者同一列的转换开关( xi  1既是控制第 i 排
的,而 y j  1则是控制第 j 列的)。
不平衡的灯
我们先来看一个定理。
定理:令 aij  1 ,1  i, j  n ,则存在 xi , y j  1 ,1  i, j  n
使得
n
n
 ai j xi y j  (
i 1 j 1
2

 o(1))  n3/2
现在我们针对此定理给出一个现实生活中的解释:假若按
照 n  n 的矩阵形式来摆放灯泡,每一个灯泡要么是亮着
的(aij  1),要么是熄灭的(aij  1)。同时存在着控
制同一排或者同一列的转换开关( xi  1既是控制第 i 排
的,而 y j  1则是控制第 j 列的)。
而上述定理的意思是,对于灯泡任意的初始设置,我们
都有可能通过调整开关而使得(开着的灯个数)—(关
着的灯个数)至少为:
( 2   o(1)) n3/2
证明:首先忽略行开关 x 。独立并均匀的让 y1 ,..., yn  1 ,并设:
n
Ri   aij y j ,
j 1
n
R   | Ri |,
i 1
对给定的 i ,无论初始值 ai j 如何,ai j y j 将会均匀的等于+1或者-1,
并且在不同的 j 之间他们相互独立。
这里既是说,无论第 i 行灯泡的初始值如何,在随机选择列开关
n
后 y ,他们的开关状态都将服从均匀分布,并一共有 2 的等可能
选择。
证明:首先忽略行开关 x 。独立并均匀的让 y1 ,..., yn  1 ,并设:
n
n
Ri   aij y j ,
R   | Ri |,
j 1
i 1
对给定的 i ,无论初始值 ai j 如何,ai j y j 将会均匀的等于+1或者-1,
并且在不同的 j 之间他们相互独立。
这里既是说,无论第 i 行灯泡的初始值如何,在随机选择列开关
n
后 y ,他们的开关状态都将服从均匀分布,并一共有 2 的等可能
选择。
故 Ri 服从 S n 分布(n 个独立均匀分布{-1,1}下的随机变量的和分
布)。所以,
E[| Ri |]  E[| Sn |] 


2 /   o(1)  n
证明:首先忽略行开关 x 。独立并均匀的让 y1 ,..., yn  1 ,并设:
n
n
Ri   aij y j ,
R   | Ri |,
j 1
i 1
对给定的 i ,无论初始值 ai j 如何,ai j y j 将会均匀的等于+1或者-1,
并且在不同的 j 之间他们相互独立。
这里既是说,无论第 i 行灯泡的初始值如何,在随机选择列开关
n
后 y ,他们的开关状态都将服从均匀分布,并一共有 2 的等可能
选择。
故 Ri 服从 S n 分布(n 个独立均匀分布{-1,1}下的随机变量的和分
布)。所以,
E[| Ri |]  E[| Sn |] 


2 /   o(1)  n
注:在随机游走中,一个人每次等可能的向前或者向后走一步,在走了
n步后,计算他离远点的距离,上述结果就是此距离的均值。
再利用期望的线性性质,
n
E[ R]   E[ Ri ] 
i 1


2 /   o(1)  n3/2
由此可以看出,肯定存在一组 y1 ,..., yn ,使得 R 至少是上述
的取值,然后我们只需要通过选取 xi 与 Ri 的符号相同,
就有:
n
n
 x a
i 1
i
j 1
ij
n
n
i 1
i 1
y j   xi Ri   | Ri | 


2 /   o(1)  n3/2
证毕
几个例子
Ramsey数;Buffon投针;素因子的个数
一些符号
Landan渐进符号;概率符号
概率在数论中的应用
Ramsey数;Sum-free集合问题
Buffon投针问题的解(几何方法)
期望的线性性质
Buffon投针(概率方法);不平衡的灯
Chebyshev不等式
素因子的个数;不同和问题
Chebyshev不等式
此不等式在概率论中具有非常重要
的地位,而其由于涉及到随机变量的
方差,故常称其为二阶矩方法。
对一个随机变量 X ,一般记  为期望,
而记  2 为方差。方差开根号后的 
则被称为标准差。
Chebyshev不等式
此不等式在概率论中具有非常重要
的地位,而其由于涉及到随机变量的
方差,故常称其为二阶矩方法。
对一个随机变量 X ,一般记  为期望,
而记  2 为方差。方差开根号后的 
则被称为标准差。
对任意正实数  ,
Pr[| X   |  ]  1  2
证明即下面的这条式子:
 2  Var[ X ]  E[( X   )2 ]   2 2 Pr[| X   |  ]
素因子的个数
定理:令 (n) 为所有n的素因子的个数,让 (n) 任意缓
慢的趋向无穷大。那么
|{x [1, n]:| ( x)  ln ln n | (n) ln ln n}| o(n)
证明:从1到 n 之间随机的抽取一个数 x 。对于素数 p ,令
1
Xp 
0
如果 p | x
其他
令 M  n1/10 ,X   X p ,对所有小于 M 的素数 p 求和。
于是我们有 ( x)  10  X ( x)   ( x) ,因为无论如何的 x ,
都不会拥有10个以上的大于 M 的素因子。(这里的10
可以是其他比较大的常数)
素因子的个数
定理:令 (n) 为所有n的素因子的个数,让 (n) 任意缓
慢的趋向无穷大。那么
|{x [1, n]:| ( x)  ln ln n | (n) ln ln n}| o(n)
证明:从1到 n 之间随机的抽取一个数 x 。对于素数 p ,令
1
Xp 
0
如果 p | x
其他
令 M  n1/10 ,X   X p ,对所有小于 M 的素数 p 求和。
于是我们有 ( x)  10  X ( x)   ( x) ,因为无论如何的 x ,
都不会拥有10个以上的大于 M 的素因子。(这里的10
可以是其他比较大的常数)
因此,在探索 与 X 的渐进性质时,它们将会有渐进相似的边界。
现在,我们知道:
 n / p 
E[ X p ] 
n
又因为 y  1   y   y ,所以
E[ X p ]  1/ p  O(1/ n)
现在,我们知道:
 n / p 
E[ X p ] 
n
又因为 y  1   y   y ,所以
E[ X p ]  1/ p  O(1/ n)
再由于期望的线性性质和一个重要事实: p x (1/ p)  ln ln x  O(1)
我们有下面的结果:
1
1
E[ X ]   pM (  O( ))  ln ln x  O(1)
p
n
现在,我们知道:
 n / p 
E[ X p ] 
n
又因为 y  1   y   y ,所以
E[ X p ]  1/ p  O(1/ n)
再由于期望的线性性质和一个重要事实: p x (1/ p)  ln ln x  O(1)
我们有下面的结果:
1
1
E[ X ]   pM (  O( ))  ln ln x  O(1)
p
n
接下来我们要探讨随机变量 X 的方差的渐进表达。
随机变量 X 的方差:
Var[ X ] 
 Var[ X
pM
p
]   Cov[ X p , X q ]
pq
由于 Var[ X p ]  (1/ p)(1 1/ p)  O(1/ n) , 所以

1
Var[ X p ]      O(1)  ln ln n  O(1)

pM
 p M p 
随机变量 X 的方差:
Var[ X ] 
 Var[ X
pM
p
]   Cov[ X p , X q ]
pq
由于 Var[ X p ]  (1/ p)(1 1/ p)  O(1/ n) , 所以

1
Var[ X p ]      O(1)  ln ln n  O(1)

pM
 p M p 
另一方面,由于 p与 q 是不同的两个素数,所以 X p X q  1 等价
于 p | x 且 q | x ,即等价于 pq | x 。因此,
Cov[ X p , X q ]  E[ X p X q ]  E[ X p ]E[ X q ]
 n / pq   n / p   n / q 



n
n
n
 1/ pq  (1/ p  1/ n)(1/ q  1/ n)
1 1 1
 (  )
n p q
所以,
 Cov[ X p , X q ] 
pq
1
1 1 2M
(
 )

n p q p q
n
1
p
由此可得,
 Cov[ X
pq
9/10
,
X
]

O
(
n
ln ln n)  o(1)
p
q
类似的我们也可以得到
 Cov[ X
pq
p
, X q ]  o(1) ,这也就是说
明,协方差对方差没有影响,所以 Var[ X ]  ln ln n  O(1) 。
所以,
 Cov[ X p , X q ] 
pq
1
1 1 2M
(
 )

n p q p q
n
1
p
由此可得,
 Cov[ X
pq
9/10
,
X
]

O
(
n
ln ln n)  o(1)
p
q
类似的我们也可以得到
 Cov[ X
pq
p
, X q ]  o(1) ,这也就是说
明,协方差对方差没有影响,所以 Var[ X ]  ln ln n  O(1) 。
最后利用Chebyshev不等式:
Pr[| X  ln ln n |  ln ln n ]   2  o(1)
对任意  0成立。又因为 X 与  之间相差10以内,所以此性质
对 同样适用。这样就完成了证明。
不同和
定义:包含正整数 x1 ,..., xk ,的集合具有不同和的性质,如
果任意元素之间的和均不相同。
即
x ,
iS
i
S  {1,..., k} 均不相同。
不同和
定义:包含正整数 x1 ,..., xk ,的集合具有不同和的性质,如
果任意元素之间的和均不相同。
即
x ,
iS
i
S  {1,..., k} 均不相同。
现在定义 f (n) :对于集合 {1,..., n} ,在其具有不同和性质的
所有子集中,元素最多的集合的元素个数就定义为 f (n) 。
不同和
定义:包含正整数 x1 ,..., xk ,的集合具有不同和的性质,如
果任意元素之间的和均不相同。
即
x ,
iS
i
S  {1,..., k} 均不相同。
现在定义 f (n) :对于集合 {1,..., n} ,在其具有不同和性质的
所有子集中,元素最多的集合的元素个数就定义为 f (n) 。
一个简单的例子:{2i : 0  i  log 2 n} 是 {1,..., n} 的子集,并且
它具有不同和的性质。
因此我们可以看出:
f (n)  1  log2 n
f (n) 的下确界有了,那么上确界又如何呢?
不同和
定理:
f (n)  log 2 n  (1/ 2)log 2 log 2 n  O(1)
证明:在这个大小为 f (n)  k 的子集中,所有元素共有 2 f ( n )
种组合,而他们求和后的大小均不相同(不同和的性质),
同时这些和都小于 nk :
2 f ( n)  nk  nf (n)
由此我们得到:
f (n)  log 2 n  log 2 log 2 n  O(1)
现在我们用随机化的思想对此做进一步的改进。
给定具有不同和性质的集合:{x1 ,..., xk }  {1,..., n} 。
令 1 ,... k 独立并服从等概率的两点分布:
Pr( i  1)  Pr( i  0)  1/ 2
现在我们用随机化的思想对此做进一步的改进。
给定具有不同和性质的集合:{x1 ,..., xk }  {1,..., n} 。
令 1 ,... k 独立并服从等概率的两点分布:
Pr( i  1)  Pr( i  0)  1/ 2
接下来我们定义一个“随机和”:
X  1 x1  ...   k xk
则其均值与方差如下:
x  ...  xk
  EX  1
,
2
x12  ...  xk2 n2 k
  VarX 

4
4
2
现在我们用随机化的思想对此做进一步的改进。
给定具有不同和性质的集合:{x1 ,..., xk }  {1,..., n} 。
令 1 ,... k 独立并服从等概率的两点分布:
Pr( i  1)  Pr( i  0)  1/ 2
接下来我们定义一个“随机和”:
X  1 x1  ...   k xk
则其均值与方差如下:
x  ...  xk
  EX  1
,
2
x12  ...  xk2 n2 k
  VarX 

4
4
2
使用Chebyshev不等式,对于任意的   1 ,
Pr[| X   | n k / 2]   2
等价的:1 
1

2
 Pr[| X   |  n k / 2]
由Chebyshev不等式,我们已经得到概率 Pr[| X   | n k / 2] 的
一个下界。
接下来将寻找它的一个上界。
由Chebyshev不等式,我们已经得到概率 Pr[| X   | n k / 2] 的
一个下界。
接下来将寻找它的一个上界。
事实1:随机和 X 取任意给定一个正整数的概率要么为0,
要么是 2  k 。
事实2:由于“不同和”的性质,给定一个随机和 X ,将
会唯一对应一组 1 ,... k ,即只有一种组合方式。
由上面两个事实可以得到:
Pr[| X   | n k / 2]  2k (n k  1)
从而得到:
2k (1   2 )  1
n
k
由Chebyshev不等式,我们已经得到概率 Pr[| X   | n k / 2] 的
一个下界。
接下来将寻找它的一个上界。
事实1:随机和 X 取任意给定一个正整数的概率要么为0,
要么是 2  k 。
事实2:由于“不同和”的性质,给定一个随机和 X ,将
会唯一对应一组 1 ,... k ,即只有一种组合方式。
由上面两个事实可以得到:
Pr[| X   | n k / 2]  2k (n k  1)
从而得到:
2k (1   2 )  1
n
k
选取优化值   3 代入,化简后就可以得到定理的结论:
k  f (n)  log 2 n  (1/ 2)log 2 log 2 n  O(1)
参考文献