Real-space Imaging of Dirac-Laudau Orbits in Topological Surface State Yingshuang Fu 付英双 Huazhong University of Science and Technology RIKEN Center for Emergent Matter Science.
Download ReportTranscript Real-space Imaging of Dirac-Laudau Orbits in Topological Surface State Yingshuang Fu 付英双 Huazhong University of Science and Technology RIKEN Center for Emergent Matter Science.
Real-space Imaging of Dirac-Laudau Orbits in Topological Surface State Yingshuang Fu 付英双 Huazhong University of Science and Technology RIKEN Center for Emergent Matter Science Acknowledgement Collaborators M. Kawamura T. Hanaguri Funding K. Igarashi T. Sasagawa H. Takagi Dirac fermions in 2 dimensional electron systems Graphene (GRP) Topological surface state (TSS) sublattice pseudospin-momentum coupled spin-momentum coupled Spin and valley degenerated Spin nondegenerated Topological Insulators Band insulator + gapless edge/surface state Quantum Spin Hall Effect Quantum B SOC B B Bulk insulator Gapless edge state (2D TI) Gapless surface state (3D TI) Energy Conduction Band Valence Band momentum Helical Dirac fermions 3D topological insulator Bi2Se3 Bi2Se3 Verified by ARPES Y. Xia et al., Nat. Phys. 5, 398 (2009). Se Se Se Band calculation H. Zhang et al., Nat. Phys. 5, 438 (2009). Spectroscopic imaging STM E E EF EF eV DOS Tunneling current: aspects STM eV (r ) z ) LDOS sample (r , E )dE I t sensitivity exp(2 Surface 0 Spatial resolution Momentum resolution Differential conductance: Magnetic dI t filed compatibility LDOS sample (r , E ) dV ARPES LDOS Landau quantization of Dirac fermions • Eigen energies Conventional electrons Dirac electrons DOS DOS E Half-integer QHE • Eigen functions Conventional electrons E QHE at RT Dirac electrons n=0 n≠0 K. S. Novoselov et al., Where is the 2-component feature? Science 315, 1379 (2007). K. S. Novoselov et al., Nature 438, 197 (2005). Y. Zhang et al., Nature 438, 201 (2005). How to image the Landau level wave functions? conventional Landau Levels on InSb(110) V(r) LDOS Localize Landau level states with potential variations N nodes! V(r) LDOS r r K. Hashimoto, etPRL al., 101, PRL 109, 116805 (2012). K. Hashimoto, et al., 256802 (2008). STM based Landau level spectroscopy of Bi2Se3 Topography STS of Landau levels Se Top view Se Se 30 nm×30 nm, -100 mV/0.1 nA T. Hanaguri et al., PRB 82, 081305(R) (2010). See also P. Cheng et al., PRL 105, 076801 (2010). Spectroscopic Imaging of Landau orbits Conductance map of Bi2Se3 Potential map at Vmin Point spectroscopy 11T, 1.5K 1 2 3 4 … n=0 120 nm×83 nm, +50 mV/50 pA Drifting Landau orbits along equipotential line n=0 n=1 n=2 Radial dependence of dI/dV intensity n=0 1 2 3 4 LDOS across drifting Landau orbits n=4 n=3 n=2 Two peaks for ALL n ≠ 0 states. LL splitting Different from conventional LLs! cf. InSb(110) n nodes for LLn n=1 n=0 K. Hashimoto, et al., PRL 109, 116805 (2012). n=0 1 2 3 4 … Model calculation V(r) r Sub-surface charge Y r0 Good quantum number : Eigen energies : x Calculated LDOS Calculation n=0 Experiment 1 2 3 n=0 1 2 3 4 2-component feature n=0 n≠0 n=0 1 2 3 4 … Calculated LDOS Calculation n=0 Experiment 1 2 3 n=0 1 2 3 4 n=4 2-component kills the nodes n=3 n=0 n=2 n=1 n≠0 n=0 Non-trivial spin texture LDOS n=0 LSDOS 1 2 3 up sz down 𝑠𝑥 , 𝑠𝑦 spin density Non-trivial spin texture to be detected with SPSTM… Spin-polarized STM R. Wiesendanger, Rev. Mod. Phys. 81, 1459 (2009) I SP (V0 ) I 0 [1 Ptip Psample cos(mtip m sample )] dI SP (V0 ) nt ns [1 Ptip Psample cos(mtip m sample )] dV Summary Dirac Landau levels under potential variation No nodes in drifting Landau orbits Landau level splitting at Vmin 2-component Landau level wave function Real-space nontrivial spin textures Ying-Shuang Fu, et al., “Imaging the two-component nature of Dirac-Landau levels in the topological surface state of Bi2Se3”, Nature Physics (2014), doi:10.1038/nphys3084 See also: arXiv:1408.0873