VIRTUAL LABORATORY AND ITS APPLICATION IN GENOMICS Luiza Handschuh Karol Marcinkowski University of Medical Sciences, Department of Haematology Institute of Bioorganic Chemistry PAS, Center.

Download Report

Transcript VIRTUAL LABORATORY AND ITS APPLICATION IN GENOMICS Luiza Handschuh Karol Marcinkowski University of Medical Sciences, Department of Haematology Institute of Bioorganic Chemistry PAS, Center.

VIRTUAL LABORATORY
AND ITS APPLICATION IN GENOMICS
Luiza Handschuh
Karol Marcinkowski University of Medical Sciences, Department of Haematology
Institute of Bioorganic Chemistry PAS, Center of Excellence for Nucleic Acid-based Technologies
INGRID 2008, Lacco Ameno, 11.04.2008
Virtual Laboratory - definition and advanteges
„The Virtual Laboratory is a distributed workgroup environment, with
the main task of providing a remote access to the various kind of
rare and expensive scientific laboratory equipment and
computational resources” (http://vlab.psnc.pl/)
 A specific representative of the RIS (Remote Instrumentation Systems)
 Based on grid environment, already implemented in the VLab System by
Poznan Supercomputing and Networking Center (PSNC)
 Independent on physical location of the instruments
 Designed to cooperate with many other grid systems
 Devoted to experimental and computational tasks – supporting the
postprocessing phase of experiment
 Experiments made in other laboratories and their results can be shared
enabling the workgroup
Modular architecture of the Virtual Laboratory system
1. Preparing a sample and/or input data
(e.g. parameters)
1. Measurement/computation
2. Data processing and visualization
3. Data storage and management
Experiment execution
in the Virtual Laboratory
Workflow management
Dynamic Measurement Scenario (DMS) design:
 Analysis of application
 Connection diagram construction
 Description of additional dependecies
 Generation of
applications and
links description
 Generation of the
measurement
scenario
description
an example workflow
In Scenario Submission
Application in NMR studies
Data storage and management
Digital Library – a crucial component in most typical RIS & VL systems,
a module responsible for data storage and management (DSM)
-
unique digital collection
-
possibility of software extention
-
cooperation with the library integrated systems, e.g. catalogue databases
-
possiblity of searching and browsing
-
widespread access (via Internet)
Case diagram
nodes – experimental/computational tasks; edges - paths of measurement execution follow
Biological introduction
Mitochondria
Cell nucleus
DNA
Endoplasmatic
reticulum
Tissues
Organism
Organs
Golgi
Apparatus
Plasma membrane
Functional genomics – how the genom
works?
protein
PROTEIN
expression
GENE
RNA
nucleus
DNA
Genomics answers the fundamental
biological questions
genotype
phenotype
Microarray experiment
„Application of functional genomics tools
for establishing complex model of tumor transformation.
Studies on molecular mechanisms of
acute myeloid leukemia pathogenesis”
as a part of a huge project announced
by Polish Ministry of Science and Informatization in 2005:
„Application of functional genomics and bioinformatics
for creation and characterisation of models
describing biological processes of great importance
in medicine and agriculture” (PBZ-MNiI-2/1/2005)
Institute of Bioorganic Chemistry PAS, Poznań
Karol Marcinkowski University of Medical Sciences, Department of Haematology
Poznań Supercomputing and Networking Center
Poznań University of Technology
Research model – acute myeloid leukemia
AML M1 FAB type
Haematopoesis
scheme
AML M1 maturation blockade
GRANULOCYTIC LINEAGE
CFU-G
BONE MARROW
STEM CFU- CFUCELL blast GEMM
Myeloblast
Myelocyte
Promyelocyte
CFUGM
Band
Metamyelocyte
Segment
MONOCYTIC LINEAGE
CFU-M
Monoblast
Monocyte
ERYTHROCYTIC LINEAGE
CFU-E
Proerythroblast
BFU-E
basophilic
erythroblast
Polichromatophilic
erythroblast
Reticulocyte
ortochromatic
erythroblast
Erythrocyte
PLATELET LINEAGE
CFU-mega
Megakaryoblast
Megakaryocyte
Platelets
LYMPHOCYTIC LINEAGE
bone marrow
T and B lymphocytes
blood/bone marrow
blood
AML M1 is almost homogenous cell population
(myeloblasts consist 90% of the whole bone marrow cell pool)
Molecular determinants of this AML type are still not well described.
Blasts from patient with FAB M1 AML
(Cancer Medicine, 5th edition)
Schematic description of research
IMPLICATED INSTITUTES:
UMS - Karol Marcinkowski
University of Medical Sciences
IBCH
UMS
AML patients / healthy bone marrow donors
PCNS - Poznań Supercomputing
and Networking Center
+
CD 34 cells isolation from
blood and bone marrow samples
CD 34
IBCH
UT
Transcriptome analysis
using DNA microarrays
- microarray probe selection
- microarray printing
- RNA isolation and labeling
- hybridisation
- scanning and analysis
IBCH
UT
Bioinformatic analysis
of obtained data
IBCH
UT
miRNA analysis
using DNA
microarrays
- DNA microarray printing
(commercial probes)
- miRNA isolation
- miRNA i labeling
- hybridisation
- scanning and analysis
IBCH
UT
Bioinformatic analysis
of obtained data
PCNS
UT
Genomics virtual
PCNS
laboratory establishement
UT
Hospitals
Research institutes
PCNS
UT
UT
-Poznań University
-of Technology
+
IBCH
UT
-
- Institute of Bioorganic
Chemistry PAS
Proteome analysis
total protein extraction
2-dimensional electrophoresis
gel scanning and analysis
protein identification
using mass spectrometry
IBCH
UT
Bioinformatic analysis
of obtained data
Normalisation
and bioinformatic analysis
of obtained data
Elaboration of a
country-wide data base
IBCH
UT
Standard clinical
diagnosis
UMS
morphology
–based blood
and bone marrow cell analysis
-immunophenotyping,
-molecular
biology tests
- cytogenetics
UMS
UT
Bioinformatic analysis
of obtained data
Elaboration of new AML diagnostic
IBCH
UMS
tools based on DNA microarrays
& protein 2DE analysis results
Biological model of
leukemic transformation
Microarray construction
Microarray of our own design – 924 oligonucleotide
probes (DNA fragments, 50-70 nt) complementary to the
genes involved in AML pathogenesis and control ones
AROS
(70 nt)
Example of preprocessed
microarray images
The same slide No.19
HL60
19sz
First step of computational work – data collection
1. Grid adjustment
2. Quantitative analysis - pixels
counting for each spot and
background (mean and median)
Signal intensity: 1- 216 (65535)
Fragment of gpr file with microarray raw data, generated by Scanarray Express
Block
Column
Row
Name
ID
X
Y
F1
Median
Dia.
F1 Mean
B1
Median
F1 SD
B1 Mean
B1 SD
1
1
1
AATK
9625
2683
12795
305
267
336
470
157
174
89
1
2
1
AATK
9625
3174
12793
300
261
306
182
160
175
73
1
3
1
AATK
9625
3658
12819
300
268
316
186
154
171
76
1
4
1
ADRA2C
152
4149
12827
300
160
177
77
157
174
83
1
5
1
ADRA2C
152
4645
12824
300
162
179
93
153
171
83
1
6
1
ADRA2C
152
5135
12831
300
156
172
77
151
169
80
1
7
1
ANGTP1
284
5619
12862
300
117
135
59
146
165
77
1
8
1
ANGTP1
284
6105
12859
300
117
136
61
150
168
72
1
1
2
ANGTP1
284
2674
13361
300
125
144
68
153
172
80
1
2
2
ATF3
467
3166
13302
300
166
196
111
157
175
81
1
3
2
ATF3
467
3662
13297
300
157
186
106
159
177
83
1
4
2
ATF3
467
4144
13331
300
137
157
76
155
172
79
1
5
2
BCL2L1
598
4647
13310
355
972
1707
1613
153
171
80
1
6
2
BCL2L1
598
5134
13298
350
797
1751
1802
160
177
80
1
7
2
BCL2L1
598
5629
13299
335
803
1666
1707
153
170
77
1
8
2
C1QTNF
6
114904
6104
13339
300
112
131
82
156
174
79
1
1
3
C1QTNF
6
114904
2672
13840
300
119
137
63
162
177
78
1
2
3
C1QTNF
6
114904
3166
13839
300
118
142
141
159
177
83
1
3
3
CBL
867
3660
13807
300
247
305
187
157
210
701
1
4
3
CBL
867
4159
13792
295
241
282
161
153
172
77
1
5
3
CBL
867
4650
13799
290
210
258
161
153
170
77
Virtual Genomics Laboratory
– automation of microarray data analysis
Name
ID
AATK
AATK
AATK
ADRA2C
ADRA2C
ADRA2C
ANGTP1
ANGTP1
ANGTP1
ATF3
ATF3
ATF3
9625
9625
9625
152
152
152
284
284
284
467
467
467
HL60_szk11_Mean
LH_szk11_Mean
HL60_szk5_Mean
4_szk5_Mean
2392
2292
336
473
2081
2085
306
428
1897
2248
316
441
1594
1878
177
242
1776
1624
179
241
1741
1655
172
234
1360
1016
135
146
1345
890
136
146
2267
1857
144
154
1804
1868
196
295
1590
2108
186
263
1459
2067
157
184
I. Raw data normalization
II. Normalized data analysis
High level analysis
of microarray data
- examples
Left:
55 genes at least 4-fold
overexpressed in the
tested samples
comparing to the
healthy control
Samples No. 20, 22 & 27
represent patients
after treatment
Wright:
Genes differentiating samples
with various types of leukemia
Experiment execution
in the Virtual Laboratory
of Genomics
In future equipement
should be directly
available for
scientists/doctors who
work in other
laboratories/institutes in
Poland via Internet
Now: only the multistep
analysis of the
microarray data can be
automated: the same
universal strategy will be
applied in every case in
order to obtain
satisfactory gene
expression results
Outlook of Virtual Laboratory of Genomics
The authors of publication
Marcin Lawenda, Norbert Meyer, Maciej Stroinski, Jan Weglarz
Poznan Supercomputing and Networking Center
Luiza Handschuh, Piotr Stepniak, Marek Figlerowicz (director of the project)
Institute of Bioorganic Chemistry PAS
Others participants of the project:
Maciej Kaźmierczak,Mieczysław Komarnicki, Krzysztof Lewandowski
Karol Marcinkowski University of Medical Sciences, Departament of Haematology
Piotr Formanowicz, Jacek Błazewicz
Poznan University of Technology, Institute of Informatics