Numerical analysis of nonlinear dynamics Ricardo Alzate Ph.D. Student University of Naples FEDERICO II (SINCRO GROUP)

Download Report

Transcript Numerical analysis of nonlinear dynamics Ricardo Alzate Ph.D. Student University of Naples FEDERICO II (SINCRO GROUP)

Numerical analysis of
nonlinear dynamics
Ricardo Alzate Ph.D. Student
University of Naples FEDERICO II (SINCRO GROUP)
Numerical analysis of nonlinear dynamics
2/45
Outline
• Introduction
• Branching behaviour in dynamical systems
• Application and results
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
3/45
Introduction
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Study of dynamics
Elements for extracting dynamical features:
• Mathematical representation
• Parameters and ranges
• Convenient presentation of results (first insight)
•
Careful quantification and classification of phenomena
• Validation with real world
R. Alzate - UN Manizales, 2007
4/45
Numerical analysis of nonlinear dynamics
Dynamics overview
How to predict more accurately dynamical features on system?
R. Alzate - UN Manizales, 2007
5/45
Numerical analysis of nonlinear dynamics
6/45
References
Chronology:
[1]. Seydel R. “Practical bifurcation ans stability analysis: from equilibrium to chaos”. 1994.
[2]. Beyn W. Champneys A. Doedel E. Govaerts W. Kutnetsov Y. and
Sandstede B. “Numerical continuation and computation of normal
forms”. 1999.
[3]. Doedel E. “Lecture notes on numerical analysis of bifurcation problems”. 1997.
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
7/45
References (2)
[4]. Keller H.B. “Numerical solution of bifurcation and nonlinear eigenvalue problems”. 1977.
[5]. MATCONT manual. 2006. and Kutnetsov Book Ch10.
[6]. LOCA (library of continuation algorithms) manual. 2002.
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Why numerics?
Nonlinear systems
Dynamics
- complex behaviour
- closed form solutions not often available
- discontinuities !!!
Computational resources
- availability – technology
- robust/improved numerical methods
R. Alzate - UN Manizales, 2007
8/45
Numerical analysis of nonlinear dynamics
How numerics?
Brute force simulation
- heavy computational cost
- tracing of few branches and just stable cases
- jumps into different attractors (suddenly)
- affected by hysteresis, etc..
Continuation based algorithms
- a priori knowledge for some solution
- a priori knowledge for system interesting regimes
R. Alzate - UN Manizales, 2007
9/45
Numerical analysis of nonlinear dynamics
10/45
Numeric bugs
Hysteresis
Branch jump
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Branching behaviour in
dynamical systems
R. Alzate - UN Manizales, 2007
11/45
Numerical analysis of nonlinear dynamics
12/45
General statement


sin( f )   0
xA
d
J  f  K  x A tan( f ) 
  y A  d 0  d1  
d
  
2

 cos 2 ( )
cos(

)
cos
(

)
 ( t )
f
f
f 



 
 x1 (t ) 

 
 equilibrium pts
x2 (t )   f ( t )   x2 (t )   f ( x,  )  
equilibrium orbits
 
x3 (t )   t
 x3 (t ) 


x1 (t )   f ( t )
In general, it is possible to study the dependence of dynamics
(solutions) in terms of parameter variation (implicit function theorem).
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Implicit function theorem
Establishes conditions for existence over a given interval, for an implicit (vector) function that solves the explicit problem
Given the equation f(y,x) = 0, if:
f(y*,x*) = 0,
f is continuously differentiable on its domain, and
fy(y*,x*) is non singular
Then there is an interval x1 < x* < x2 about x*, in which a vector function y = F(x) is defined by 0 = f(y,x) with the
following properties holding for all x with x1<x<x2 :
-
f(F(x),x) = 0,
F(x) is unique with y* = F(x*),
F(x) is continuously differentiable, and
fy(y,x)dy/dx + fx(y,x) = 0 .
R. Alzate - UN Manizales, 2007
13/45
Numerical analysis of nonlinear dynamics
14/45
Implicit function theorem (2)
x2  y 2  1  0  g ( y, x)  y 2  x2 1
1

2 2
 f1 ( x)  1  x 
y  f ( x)  
1
2
 f ( x)   1  x 2
 
 2
 dg
J 
 dx
dg 
  2 x 2 f ( x) 

dy 
2


0  g ( f ( x), x)    1  x 2    x 2  1


1
2
Then, singularity condition on gy(f(x),x) excludes x = ±1 as part of
function domain in order to apply the theorem.
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
15/45
Branch tracing
The goal is to detect changes in dynamical features depending on
parameter variation:
f ( y,  ) 
df ( y,  ) f ( y,  ) dy f ( y,  )


d
y d 

Then, by conditions of IFT:
f ( y,  )
df ( y,  )
dy

0

f ( y,  )
dy
d
y
Behaviour evolution as function of λ, not defined for singularities on fy(y,λ) (system having zero eigenvalues)
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
16/45
Branch tracing (2)
In general, there are two main ending point type for a codimension-one
branch namely turning points and single bifurcation points.
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Parameterization
In order to avoid numerical divergence closing to turning points:
- Convenient change of parameter,
- Defining a new measure along the branch, e.g. the arclength
R. Alzate - UN Manizales, 2007
17/45
Numerical analysis of nonlinear dynamics
18/45
Arclength
Augmented system with additional constraints:
 y  y(s)
f ( y,  )  0  
   ( s)
s    2   y 2
 dy   d  
  
 1
 ds   ds 
2
2
df
dy
d
 0  fy
 f
ds
ds
ds
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
19/45
Tangent predictor
Tangential projection of solution:
y j 1  y j  h j v j
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
20/45
Tangent predictor (2)
Tangent unity vector:
J ( y j )v j  0
J(y j) 
F
y
y y j
 J  j  0
 j 1 T  v   
 (v ) 
1
R. Alzate - UN Manizales, 2007
v j 1 , v j  1
Numerical analysis of nonlinear dynamics
21/45
Root finding
Newton-Raphson method for location of equilibria:
f ( y0  dy)  f ( y0 )  f y0dy  h.o.t.  f ( y0 )  f y0dy
 f ( y0 )
0  f ( y )  f dy  dy 
f y0
0
0
y
f ( y1 )
y  y  dy  f ( y )  0?  y  y 
...
1
fy
1
0
1
R. Alzate - UN Manizales, 2007
2
1
Numerical analysis of nonlinear dynamics
Root finding (2)
In general:
 fYj 1dY j 1   f (Y j 1 )
f ( y,  )  f (Y )  
j
j 1
j 1
Y

Y

dY

 rank ( fYj 1 )  n  1
i.e. nonsingularity of Jacobian at solution
F
j 1
 f (Y ) 
  j 1 
 g (Y ) 
Allowing implementation of method.
R. Alzate - UN Manizales, 2007
22/45
Numerical analysis of nonlinear dynamics
23/45
Correction
Additional relation gj(y) defines an intersection of the curve f(y) with
some surface near predicted solution (ideally containing it):
- Natural continuation:
g j ( y)  yio  yioj 1
 f (Y ) 
F 
0
j 1 
Y

Y
 io io 
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
24/45
Correction (2)
- Pseudo-arclength continuation:
g j ( y )  y  y j 1 , v j
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
25/45
Correction (3)
- Moore-Penrose continuation (MATCONT):
g kj ( y )  y  Y k 1 ,V k
 J (Y k 1 )V k  0
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
26/45
Moore-Penrose
Pseudo-inverse matrix:
A nx  n1  A( n1)x n  AT  AAT 
1
Y  Y  Y  Yf   f Y
1
0
Y Y  f
1
0
0
Y
 f Y   f
0 
Y
0
R. Alzate - UN Manizales, 2007
0
  Y    f  f Y 
0
Y  nx  n 1 
0 
Y
0
Numerical analysis of nonlinear dynamics
Step size control
Basic and effective approach (there are many !!!):
- Step size decreasing and correction repeat if non converging
- Slightly increase for step size if quick conversion
- Keep step size if iterations are moderated
R. Alzate - UN Manizales, 2007
27/45
Numerical analysis of nonlinear dynamics
Test functions
Detection of stability changes between continued solutions:
- In general are developed as
smooth functions zero valued
at bifurcations, i.e.
 ( y0 , 0 )  0  ( y j ,  j ) ( y j 1,  j 1 )  0
R. Alzate - UN Manizales, 2007
28/45
Numerical analysis of nonlinear dynamics
29/45
Test functions (2)
Usual chooses:
 : max 1,2 ,...,n 
 : det f y  y0 , 0 
 f ( y,  ) 
F (Y ) : 


(
y
,

)


R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
30/45
Branch switching
When there is a single bifurcation point, there are more than one
trajectories for the which (y0,λ0) is an equilibrium:
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
31/45
Branch switching (2)
How to track such new trajectory?
f  y  s  ,   s   0 
df
dy
d
 f y0
 f 0
0
ds
ds
ds
0

v

range
f


y
dy

  0 v   1h  
0
ds
 h  null  f y 
2
- Algebraic branching equation (Keller 1977 !!!)  b  ac  0



a :  T f yy0 hh


2
2
a 1  2b 1 0  c 0  0   b :  T  f yy0 v  f y0  h

T
0
0
0
c :   f yy vv  2 f y v  f  

0
 null    range  f y 
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
32/45
An algorithm
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Application and results
R. Alzate - UN Manizales, 2007
33/45
Numerical analysis of nonlinear dynamics
34/45
Continuation of periodic orbits
P. Piiroinen – National University of Ireland (Galway):
- Single branch continuation
- Extrapolation prediction based
- Parameterization by orbit period
- Step size increasing if fast converging
- Step size reducing if non converging
- Newton-Raphson correction based
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
35/45
Continuation of periodic orbits (2)
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
Tracing a perioud-doubling
R. Alzate - UN Manizales, 2007
36/45
Numerical analysis of nonlinear dynamics
Eigenvalue evolution
R. Alzate - UN Manizales, 2007
37/45
Numerical analysis of nonlinear dynamics
On unit circle
R. Alzate - UN Manizales, 2007
38/45
Numerical analysis of nonlinear dynamics
Sudden chaotic window
R. Alzate - UN Manizales, 2007
39/45
Numerical analysis of nonlinear dynamics
On set – brute force
R. Alzate - UN Manizales, 2007
40/45
Numerical analysis of nonlinear dynamics
On set – continued
R. Alzate - UN Manizales, 2007
41/45
Numerical analysis of nonlinear dynamics
42/45
Conjectures
How to explain such particularly regular cascade?
- development of local maps
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
43/45
Open tasks
- Improvement of numerical approximation for map
- Theoretical prediction (or validation): A. Nordmark (2003)
p( x)  a  bx  cx2  dx3  ex4  f x
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
44/45
Conclusion
A general description about numerical techniques for branching analysis
of systems has been developed, with promising results for a particular
application on the cam-follower impacting model.
By the way, is not possible to think about a standard or universal
procedure given inherent singularities of systems, then researcher skills
constitute a valuable feature for success purposes.
R. Alzate - UN Manizales, 2007
Numerical analysis of nonlinear dynamics
45/45
...?
http://wpage.unina.it/r.alzate
Grazie e arrivederci !!!
R. Alzate - UN Manizales, 2007