QualMark Corporation Accelerate the ® Future HALT 제품의 연구 개발 단계에서의 신뢰성 확보를 위하여 적용 HASS 생산 공정의 품질 확보와 Monitoring 을 위하여 적용 Eric Gerlach Managing Engineer, QualMark Huntington Beach.

Download Report

Transcript QualMark Corporation Accelerate the ® Future HALT 제품의 연구 개발 단계에서의 신뢰성 확보를 위하여 적용 HASS 생산 공정의 품질 확보와 Monitoring 을 위하여 적용 Eric Gerlach Managing Engineer, QualMark Huntington Beach.

QualMark Corporation
Accelerate
the
®
Future
HALT 제품의 연구 개발 단계에서의 신뢰성 확보를
위하여 적용
HASS 생산 공정의 품질 확보와
Monitoring 을
위하여 적용
Eric Gerlach Managing Engineer,
QualMark Huntington Beach ARTC
남일 이엔브이
HALT - Highly Accelerated Life Test






빠른 제품 개발과 공정 결함 발견.
Design margins 의 평가 및 개선.
시장 여건에 맞는 완벽한 신제품 출하.
개발 시간 및 비용 절감 가능.
신제품 시장 출하 전 디자인 문제점 해결
및 품질 불량 최소화.
생산품의 개발 경비 절감 및 평가
개발 단계의 HALT는 합부 판정을 위한 시험 이 아닌 연구 개발
부서의 디자인 Tool 입니다.
따라서 기존에 정해진 규격에 따른 품질 시험이 아니고 개발품의
조건에 맞는 새로운 시험 규격을 개발 하는 것 입니다.
Developmental HALT Process
STEP 1: 시작 전 준비

개발 품목 협의 를 위한 디자인 부서 와 유관 부서
의 회의.


적용할 스트레스의 결정.
적용할 HALT 샘플 수.
It is essential that the product being tested be fully
exercised and monitored throughout HALT for problem
detection.




HALT 중 수행할 기능 시험 .
분석 기록할 Parameter 확정.
불량 구성 요소의 정의.
시험 계획의 수립
Developmental HALT Process
STEP 2: Developmental HALT Service
 시험 준비 및 Setup

Product에 에너지 전달을 효율적으로 하기위한 진동 fixture
디자인 (electro dynamic vibration fixtures와 는 다른 적용).

Product에 열 전달을 최대한 효율적으로 하기위한 air
ducting 디자인
Product 조건에 맞는 Chamber 튜닝
Product에 thermocouples를 측정 포인트 에 적용

기능 시험에 필요한 모든 Cabling


Developmental HALT Process
STEP 2: (cont.)
Step Stress 접근 방법 활용 . . .
Stimuli
Continue until operating & destruct limits
of UUT are found or until test equipment
limits are reached.
D
C
B
A
0:00
0:10
0:20
Time (hour:minute)
0:30
Developmental HALT Process
STEP 2: (cont.) Margin 발견 방법.......
Lower
Destruct
Limit
Lower
Operating
Limit
Upper
Upper
Operating Destruct
Limit
Limit
Product
Specs
Operating
Operating
Margin
Margin
Destruct Margin
Destruct Margin
Stress
Developmental HALT Process
STEP 2: (cont.)

Thermal Step Stress
먼저 cold step stress 그리고 hot step stress 수행.
 Step (10 °C 확대)
수행, “limits”에 도달하면 5 °C 감소.
적용 시간 : 최소 10 minutes + Product functional tests
수행시간
.
 기본적인 기술적 한계에 다다를 때까지 계속하여 지속 시험.

(If circuits have thermal safeties, ensure operation & then defeat to
determine actual operating & destruct limits.)

스텝 적용 중 product stresses 병행 인가 의 예:



Power Supplies: Power cycling during cold step stress.
Input voltage variation. Load variations.
Frequency variation of clocks
Developmental HALT Process
STEP 2: (cont.)

Fast Thermal Transitions

챔버 최대 온도 변화 의 Transition temperature 적용.
Thermal step stress 에서 찾은 operating limits 보다 5° 적게
temperature range 를 적용.

만약 product 가 초기 maximum thermal transitions 에
견디지 못하면 , transition rate 를 10 °C per minute 씩 줄여
operating limit 를 찾음.

본 series of transitions 을 최소한 10 minutes 적용 (혹은
functional tests 수행 시간은 추가 적용 하여 수행).


추가 product stresses 를 적용 가능.
Developmental HALT Process
STEP 2: (cont.)

Vibration Step Stress
Product 의 vibration response 이해 (i.e. vibration input
증가에 따른 Product respond 의 고찰).


Grms increments 정의 (일반적으로 3-5 Grms 증가).
적용 시간 : 최소 10 minutes + Product functional tests
수행시간 .
 기본적인 기술적 한계에 다다를 때까지 계속하여 지속 시험.


스텝 적용 중 product stresses 병행 인가.
Developmental HALT Process
STEP 2: (cont.)
Power Spectral Density (measured on product on OVS-2.5HP)
Marker Fcn
Trace: D
[Band Pwr]
Date: 03-14-97 Time: 09:46:00 AM
A: ROBOT BD
100
m*
LogMag
10
u*
B:ROBOT ARM
100
m*
LogMag
1
u*
C:R MOTOR
X:288
Strt: 0 Hz
Sop: 3 kHz
Hz
Y:1.19064 m*
Y* = grms^2/Hz
Y-AXIS
Band:5.468 grms
32Hz
X:288
AVG: 20
Hz
12.8kHz
Y:2.82893 m*
Y* = grms^2/Hz
Z-AXIS
Band:4.488 grms
32Hz
X:288
AVG: 20
Hz
1
*
12.8kHz
Y:3.44536 m*
Y* = grms^2/Hz
X-AXIS
LogMag
100
n*
D:TABLE
Band:6.548 grms
32Hz
X:288
1
*
AVG: 20
Hz
12.8kHz
Y:176.027 u*
Y* = grms^2/Hz
Z-AXIS
LogMag
10
u*
Band:9.842 grms
32Hz
AVG: 20
12.8kHz
Developmental HALT Process
STEP 2: (cont.)

Combined Environment
Thermal operating limits 를 적용하여 thermal profile 을
개발, dwell times 과 transitions rates 는 thermal
step stress & fast thermal transitions 와 동일하게 적용.

Power cycling 과 같은 추가적인 product stresses 를
profile 에 추가 적용.

초기 profile 수행중 , vibration step stress 와 같이 약 5
Grms constant vibration level Step 을 적용하여 수행 .

higher Grms levels (approx. 20 Grms) 에 도달한 경우
tickle vibration (approx. 5 Grms) 을 적용 (To determine if
failures were precipitated at high G level but only
detectable at lower G level.)

Failure Percentage by Stress Type
Combination of Vibration
and Rapid Temperature
Transitions
20%
Cold Step Stress
14%
Hot Step Stress
17%
Rapid Temperature
Transitions 4%
Vibration Step Stress
45%
Developmental HALT Process
STEP 3: Post Testing

모든 발생 불량의 중요 요인 root cause 를 정의
개발된 HALT 의 결과 와 발생 불량의 중요 요인을 파악하기
위한 design engineers 와 협의.


품질 수정에 관한 방법 정의
수정된 품질에 대한 확인 과 새로운 문제점 발견을 위한
HALT 확인 시험.
 Engineering changes 이 있을 경우 이를 확인 하기 위산
주기적인 평가 HALT 시험 .

Traditional vs. HALT
Engineering Needs
Product Development Manpower Requirements
Spending
Rate
DVT1 ..... DVTn,
6
5
MR
4
3
MR
2
1
$ Savings
0
1
2
3
4
5
6 7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Time
HALT vs. Traditional Testing
(Information from United Technologies Presentation by Ronald Horrell, Chief of Reliability)
HALT







“Test, Repair, & Test”
Gathers info. on Product
Limitations
Focus on Design Weakness &
Failures
6 DoF Vibration
High Thermal Rate of Change
Loosely Defined - Modified “On
the Fly”
Not a “Pass/Fail” Test
Traditional Testing










Results used as basis for HASS
or ESS

“Test, Analyze, & Fix”
Simulates a “Lifetime” of use
Focus on Finding Failures.
Single Axis Vibration
Moderate Thermal Rate of Change
Narrowly Defined - Rigidly
Followed
“Pass/Fail” Test
Engineering Judgment used on
CA
- CA Implemented for ALL
Deficiencies
Usually found too late to be
implemented economically.
Results typically not used in ESS
HALT vs. Traditional Testing
(Information from United Technologies Presentation by Ronald Horrell, Chief of Reliability)
Comparison of Cost/Schedule
Product #1 - HALT





Product #2 - Traditional
Test facility @ $80,000
 Test facility > $650,000
Three test specimens
 Two test specimens
One integrated test chamber  2 thermal chambers, 2 vibe tables
No vibe fixture
 Two vibe fixtures
5 days to complete
 7 months to complete
결론:
HALT는 빠르게 시장 사항에 접근 가능(test time이 적음),
Engineering costs 절감, 그리고 traditional testing
methodologies 보다 효과가 실제적이고 경제적임 .
HASS - Highly Accelerated Stress Screen
디자인과 생산 기법의 변화 감지 와 수정.
 생산 시간 과 비용 절감.
 품질과 field reliability 의 증가.
 Field service 와 warranty 비용 감소.
 제품 소개 단계의 infant mortality rate 의
감소

HASS is not a test, it’s a process. Each product
has its own process.
HASS Screen Diagram
Lower
Destruct
Limit
Lower
Operating
Limit
Product
Specs
Upper
Upper
Operating Destruct
Limit
Limit
Precipitation Screen
Detection
Screen
ESS
Stress
HASS Process
계발 단계에서의 준비 (involve mfg.)


HASS development
 HALT 결과 리뷰 (RCA on all failures completed)
 생산시 필요 사항 점검 및 Fixture 디자인.
 초기 screen 개발& production fixture 제작(thermal/vibe)
 Screen 적합 확인 시험
Production HASS
 product의 품질 및 수명 결과 Monitoring 그리고 필요한 경우
screen 의 수정
It is essential that the product being tested be fully
exercised and monitored for problem detection.
The Ideal HASS Thermal Profile
UDL
Make dwells long enough to execute diagnostic
suite. Execute diagnostics during entire profile.
UOL
Fast Rate Thermal
S
P
E
C
t
Slow Rate Thermal
LOL
LDL
It is highly recommended to combine six-axis
vibration, tickle vibration, power cycling,
other stresses with thermal. Powered on
monitoring is essential.
HASS Results
불량 Type 의 예







납땜성 불량
Socket 불량
Component 불량
IC leads 의 훼손
잘못된 부품 삽입
잘못된 부품 위치
시험 fixture와 program errors
PCBAs went through ATE and functional testing at our supplier’s facility.
PCBAs were delivered to Array Technology and went through HASS. We
saw yields from 90% down to 17%.
Summary of Customers at
QualMark’s Santa Clara ARTC
By Mike Silverman
 Manager of Santa Clara ARTC

Summary of Customers

Distribution of Companies by Industry
Industry Types
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Number of
Companies
Networking Equipment
6
Defense Electronics
4
Microwave Equipment
4
Fiberoptics
2
Remote Measuring Equipment
2
Supercomputers
2
Teleconferencing Equipment
1
Video Processing Equipment
1
Commercial Aviation Electronics
1
Hand-held Computers
1
Hand-held Measuring Equipment
1
Monitors
1
Medical Devices
1
Personal Computers
1
Printers and Plotters
1
Portable Telephones
1
Speakers
1
Telephone Switching Equipment
1
Semiconductor Manufacturing Equipment
1
Product Type
Electrical
Electrical
Electrical
Electrical
Electrical
Electrical
Electro-mechanical
Electrical
Electrical
Electrical
Electrical
Electrical
Electro-mechanical
Electrical
Electro-mechanical
Electrical
Electro-mechanical
Electrical
Electro-mechanical
Summary of Customers

Distribution of Products by
Environment Type
Environment Type Number of
Products
Office
18
Office with User
9
Vehicle
8
Field
7
Field with User
4
Airplane
1
Thermal
Environment
0 to 40°C
0 to 40°C
-40 to +75°C
-40 to +60°C
-40 to +60°C
-40 to +75°C
Vibration Environment
Little or no vibration
Vibration only from user of equipment
1-2 Grms vibration, 0-200 Hz frequency
Little or no vibration
Vibration only from user of equipment
1-2 Grms vibration, 0-500 Hz frequency
Summary of Customers

HALT Limits by Attribute
Attribute
Average
Most Robust
Least Robust
Median
Thermal Data
LOL LDL UOL
-55
-73
+93
-100
-100 +200
15
-20
+40
-55
-80
+90
UDL
+107
+200
+40
+110
Vibration Data
VOL
VDL
61
65
215
215
5
20
50
52
Summary of Customers

HALT Limits by Environment
Thermal Data,oC
Environment LOL LDL
UOL
Office
-62
-80
92
Office with User -21
-50
67
Vehicle
-69
-78
116
Field
-66
-81
106
Field with User -49
-68
81
Airplane
-60
-90
110
UDL
118
76
123
124
106
110
Vibration Data, Grms
VOL
VDL
46
52
32
36
121
124
66
69
62
62
18
29
Summary of Customers

HALT Limits by Product
Application
Product
Application
Military
Field
Commercial
Thermal Data,oC
Vibration Data, Grms
LOL LDL UOL UDL VOL
VDL
-69
-57
-48
-78
-74
-73
116
94
90
123
115
95
121
64
32
124
66
39
Failure Percentage by Stress Type
Combination of Vibration
and Rapid Temperature
Transitions
20%
Cold Step Stress
14%
Hot Step Stress
17%
Rapid Temperature
Transitions 4%
Vibration Step Stress
45%
Failure Details

Vibration Step Stress Failures
Failure Mode
Broken lead
Troubleshooting in progress
Screws backed out
Socket interplay
Connector backed out
Component fell off (non-soldered)
Tolerance issue
Card backed out
Shorted component
Broken component
Sheared screws
RTV applied incorrectly
Potentiometer turned
Plastic cracked at stress point
Lifted pin
Intermittent component
Failed component
Connectors wearing
Connector making intermittent contact
Connector broke from board
Broken trace
Qty
43
17
9
5
5
5
4
4
2
2
1
1
1
1
1
1
1
1
1
1
1