UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Yahya C. KURAMA University of Notre Dame Notre Dame, Indiana Qiang SHEN, Michael MAY (graduate students) Cooperative Earthquake Research Program on.

Download Report

Transcript UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Yahya C. KURAMA University of Notre Dame Notre Dame, Indiana Qiang SHEN, Michael MAY (graduate students) Cooperative Earthquake Research Program on.

UNBONDED POST-TENSIONED
HYBRID COUPLED WALLS
Yahya C. KURAMA
University of Notre Dame
Notre Dame, Indiana
Qiang SHEN, Michael MAY (graduate students)
Cooperative Earthquake Research Program on Composite and Hybrid Structures
June 24-25, 2001
Berkeley, California
UP COUPLED WALL SUBASSEMBLAGE
concrete
steel
PT
anchor
spiral
beam
connection
region
wall region
PT tendon
cover plate
angle
embedded
plate
PT tendon
DEFORMED SHAPE AND COUPLING FORCES
contact
region
gap
opening
Vcoupling
P
z
lb
Pz
Vcoupling =
lb
Vcoupling
d
P b
BROAD OBJECTIVES
• Investigate feasibility and limitations
• Develop seismic design approach
• Evaluate seismic response
RESEARCH ISSUES
•
•
•
•
•
Force/deformation capacity of beam-wall connection region
Yielding of the PT steel
Energy dissipation
Self-centering
Overall/local stability
RESEARCH PHASES
• Subassemblage behavior: analytical and experimental
• Multi-story coupled wall behavior: analytical
ANALYTICAL WALL MODEL (DRAIN-2DX)
wall
beam
wall
RIGHT WALL REGION
LEFT WALL REGION
truss
element
fiber
element
angle element
beam elements
wallheight
elements
truss
kinematic element
constraint
kinematic
constraint
slope=
1:3
embedded plate
kinematic
constraint
modeling of wall contact regions
wallcontact
elements
MATERIAL PROPERTIES
stress
stress
TENSION
TENSION
strain
compression-only steel fiber
stress
TENSION
strain
compression-tension steel fiber
strain
compression-only concrete fiber
stress
TENSION
strain
truss element
ANGLE MODEL
Tay
Kishi and Chen (1990)
seat angle at
tension yielding
bolt or
PT anchor
axial
force
axial
force
TENSION
Tay
=
deformation
angle model
axial
force
TENSION
TENSION
+
deformation
fiber 1
def.
fiber 2
FINITE ELEMENT MODEL (ABAQUS)
beam rotation=3.3%
BEAM STRESSES
(ksi)
CONCRETE STRESSES
(ksi)
PT anchor
side
beam
side
DRAIN-2DX VERSUS ABAQUS
beam shear (kN)
1000
beam shear (kN)
800
ABAQUS (rigid)
DRAIN-2DX (rigid)
ABAQUS (deformable)
ABAQUS (rigid)
0
beam rotation (%)
5
beam shear (kN)
0
beam rotation (%)
5
contact/beam depth
1.0
1000
db= 718 mm
ABAQUS (deformable)
DRAIN-2DX (deformable)
d b= 577 mm
ABAQUS (deformable)
DRAIN-2DX (deformable)
0
beam rotation (%)
5
0
beam rotation (%)
5
BEAM-WALL SUBASSEMBLAGE
F
L8x8x1-1/8
W21x182
lw = 10 ft
lb = 10 ft (3.0 m)
fpi = 0.6 fpu
lw = 10 ft
ap = 0.65 in2
(420 mm2)
LATERAL LOAD BEHAVIOR
beam moment (kN.m)
3000
Mp
My
beam moment (kN.m)
2500
PT-yielding
flange yld.
cover plate yielding
tension angle yielding
0
L8x8x1-1/8
decompression
0
beam rotation (%)
6
beam moment (kN.m)
-2500
-6
6
beam moment (kN.m)
2500
2500
0
0
L8x8x3/4
no angle
-2500
-2500
-6
0
beam rotation (%)
0
beam rotation (%)
6
-6
0
beam rotation (%)
6
PARAMETRIC INVESTIGATION
DESIGN PARAMETERS
•
•
•
•
•
•
•
RESPONSE PARAMETERS
•
•
•
•
•
Beam cross-section
Wall length
Beam length
PT steel area
Initial PT stress
Angle size
Cover plate size
beam moment (kN.m)
3000
ap=560mm2
Decompression
Tension angle yielding
Cover plate yielding
Beam flange yielding
PT tendon yielding
beam moment (kN.m)
3000
bilinear estimation
analytical model
ap=420mm2
ap=280mm2
decompression
tension angle yielding
cover plate yielding
beam flange yielding
PT tendon yielding
estimation points
decompression
tension angle yielding
cover plate yielding
beam flange yielding
PT tendon yielding
0
beam rotation (%)
8
0
beam rotation (%)
6
28 ft
28 ft
PROTOTYPE WALL
28 ft
107 ft
(32.6 m)
20 ft 20 ft
10 ft 10 ft 10 ft
(3.0m 3.0m 3.0 m)
20 ft
20 ft
PLAN VIEW
W21x182
ap = 0.868 in2
(560 mm2)
fpi = 0.65 fpu
20 ft
COUPLED WALL BEHAVIOR
base moment (kip.ft)
120000
base moment (kip.ft)
120000
coupled wall
coupled wall
two uncoupled walls
right wall
left wall
0
roof drift (%)
2.5
0
roof drift (%)
4
CYCLIC BEHAVIOR
6-story precast wall w/ UP beams
8-story precast wall w/ UP beams
1000
base shear (kips)
base shear (kips)
1000
0
-1000
-3
0
roof drift (%)
3
0
roof drift (%)
1.5
1000
6-story CIP wall w/ embedded beams
1000
base shear (kips)
-1000
-1.5
base shear (kips)
6-story CIP wall w/ UP beams
0
0
-1000
-1.5
0
roof drift (%)
1.5
0
-1000
-1.5
0
roof drift (%)
1.5
base shear, V (kips)
4500
DESIGN APPROACH
1st beam angle yielding
1st beam flange yielding
Survival EQ
1st beam PT tendon yielding
wall base concrete crushing
Vdes
Design EQ
K
K(R/m)
Vdes/R
0
Ddes
roof drift, D (%)
Dsur
3
MAXIMUM DISPLACEMENT DEMAND
F
(Fbe,Dbe)
F
akbe
[(1+br)Fbe,Dbe]
(brFbe,Dbe)
D
D
+
kbe
Bilinear-Elastic (BE)
F akbe
D
=
(1+bs)kbe
bskbe
Elasto-Plastic (EP)
• br = bs = 1/4, 1/3, 1/2
• a = 0.02, 0.10
• Moderate and High Seismicity
• Design-Level and Survival-Level
• Stiff Soil and Medium Soil Profiles
Bilinear-Elastic/
Elasto-Plastic (BP)
R=[c(m-1)+1]1/c
c=
Ta
Ta+1
+
b
T
(Nassar & Krawinkler, 1991)
DUCTILITY DEMAND SPECTRA
br = bs = 1/3, a=0.10, High Seismicity, Stiff Soil, R=1, 2, 4, 6, 8 (thin
thick)
Design EQ (SAC): a=3.83, b=0.87
Survival EQ (SAC): a=1.08, b=0.89
ductility demand, m
ductility demand, m
14
14
BP, mean
regression
0
period, T (sec)
0
3.5
Survival EQ (SAC): BP versus EP
ductility demand, m
14
period, T (sec)
3.5
Survival EQ (SAC): BP versus BE
ductility demand, m
14
BP, mean
EP, mean
BE, mean
0
period, T (sec)
3.5
0
period, T (sec)
3.5
EXPERIMENTAL PROGRAM
• Beam-wall connection subassemblages
• Ten half-scale tests (angle, beam, post-tensioning properties)
Elevation View (half-scale)
Objectives
• Investigate beam
M-q behavior
• Verify analy.
model
• Verify design
tools and
procedures
L4x8x3/4
PT strand
load block
W10x68
strong floor
lw = 5 ft
lb = 5 ft (1.5 m)
fpi = 0.65 fpu
lw = 5 ft
ap = 0.217 in2
(140 mm2)
EXPERIMENTAL SET-UP
actuators
wall
beam
load block
SUMMARY AND CONCLUSIONS
Beam Behavior
• Analytical models seem to work well
• Gap opening governs behavior
• Large self-centering, limited energy dissipation
• Large deformations with little damage
• Bilinear estimation for beam behavior
• Experimental verification
Wall Behavior
• Level of coupling up to 60-65 percent
• Two-level performance based design approach
• ~25% larger displacements compared to embedded
systems
ONGOING WORK
• Subassemblage tests
• Design/analysis of multi-story walls
• Dynamic analyses of multi-story walls
ACKNOWLEDGMENTS
•
•
•
•
•
•
•
•
National Science Foundation (Dr. S. C. Liu)
University of Notre Dame
CSR American Precast, Inc.
Dywidag Systems International, U.S.A, Inc.
Insteel Wire Products
Ambassador Steel
Ivy Steel & Wire
Dayton/Richmond Concrete Accessories