Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models Munir Ahmed Khan Division of Heat Transfer Dept.
Download ReportTranscript Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models Munir Ahmed Khan Division of Heat Transfer Dept.
Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH Outline • Introduction • Brief History of Development • Modeling Approach • Numerical Modeling • Results • Conclusion Heat Transfer / Energy Sciences / LTH PEMFC Schematic (Jacobson, 2004) Heat Transfer / Energy Sciences / LTH History of PEMFC Development • • • • • • 1839 (Fuel Cell Principle) 1965 (NASA) 1968 (Nafion) 1969 (Biosatellite Missions) 1970 – 1989 (Abeyance) 1990 – Present (Ballard Power and Los Alamos Labs) Heat Transfer / Energy Sciences / LTH Scientific Research Activities Scientific Research Experimental Approach Heat Transfer / Energy Sciences / LTH Numerical Approach Numerical Approach PEMFC Models Based on Thermal Analysis Based on Flow domain Based on Catalyst Models Isothermal Single Phase Thin Interface Non-isothermal Multi Phase Discrete Volume Agglomerate Model Heat Transfer / Energy Sciences / LTH Presented Modeling • Interdigitated Flow Field • Cathode Side Only • 2-Phase – 2 Phase Flow – 2 Phase Temperature – 2 Phase Current • Agglomerate Catalyst Modeling Heat Transfer / Energy Sciences / LTH Computational Domain Component (Larminie J, 2003) Heat Transfer / Energy Sciences / LTH Dimension (mm) Inlet 0.4 Outlet 0.4 Current Collector 0.8 PTL thickness 0.4 Catalyst layer thickness 0.1 Flow Fields (www.me.udel.edu) Heat Transfer / Energy Sciences / LTH Bridging Numerical and Experimental Modeling Experimental Modeling Actual Machine Numerical Modeling Heat Transfer / Energy Sciences / LTH Idealized Catalyst Layer Pt Particle Gas Pores Carbon Particle Electrolyte Bulk Nafion Heat Transfer / Energy Sciences / LTH Agglomerate Transport Phenomena H+ H+ • • • • • Multicomponent Diffusion Oxygen Dissolution Dissolved Oxygen Diffusion Electron Transport Proton Migration H2O H2O O2 O2 O2 O2 O2 e- e- e- O2 Heat Transfer / Energy Sciences / LTH Oxygen Reduction Reactions • Reaction Steps M O2 M O2 M O2 H e M O2 H M O2 H 3H 3e 2H 2 O M • Rate of Reaction k c f Tlocal , local RO2 k c COlocal 2 RO2 Current RO2 ,net E r k c COsurface 2 Heat Transfer / Energy Sciences / LTH Boundary Conditions 1. Inlet Gas Concentration Fluid Temperature Pressure Water Saturation 2. Catalyst/Membrane Interface Nominal Cathode Overpotential (NCO) 3. Current Collector Solid Phase Potential Solid Phase Temperature 2 1 3 Heat Transfer / Energy Sciences / LTH Velocity and Pressure Fields Velocity Distribution (m/s) Pressure Field (N/m2) Heat Transfer / Energy Sciences / LTH Oxygen Mass Fraction I 0.22 A I 0.57 A cm 2 I 0.89 A Heat Transfer / Energy Sciences / LTH cm 2 cm 2 Water Saturation I 0.22 A I 0.57 A cm 2 I 0.89 A Heat Transfer / Energy Sciences / LTH cm 2 cm 2 Fluid Temperature (K) I 0.22 A I 0.57 A cm 2 I 0.89 A Heat Transfer / Energy Sciences / LTH cm 2 cm 2 Solid Temperature (K) I 0.22 A I 0.57 A cm 2 I 0.89 A Heat Transfer / Energy Sciences / LTH cm 2 cm 2 Membrane Phase Conductivity 2.15 1.54 1.53 2.1 1.52 1.51 σm (S/m) σm (S/m) 2.05 1.5 2 1.95 1.49 1.9 1.48 1.47 0 0.0002 0.0004 0.0006 0.0008 0.001 Lenght (m) I 0.22 A cm 2 Heat Transfer / Energy Sciences / LTH 0.0012 0.0014 0.0016 1.85 0 0.0002 0.0004 0.0006 0.0008 Length (m) I 0.89 A cm 2 0.001 0.0012 0.0014 0.0016 Cathode Overpotential (V) 0.4 NCO - Local Over Potential (V) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0.0002 0.0004 0.0006 0.0008 0.001 Length (m) 0.89 A/cm2 Heat Transfer / Energy Sciences / LTH 0.57 A/cm2 0.22 A/cm2 0.0012 0.0014 0.0016 Model Verification & Comparison Heat Transfer / Energy Sciences / LTH Conclusion • Effect of Liquid Water – More prominent at higher current density • Membrane Phase Conductivity – Highly dependant on water activity • Losses – Higher losses are observed at higher current density • Mass Limitation Effects – Adequately captured by agglomerate model • Power – Maximum power is observed at 0.55 V Heat Transfer / Energy Sciences / LTH THANKS TO ALL & Special Thanks to Jinliang Yuan Bengt Sundén HEC Pakistan Swedish Research Council Heat Transfer / Energy Sciences / LTH