File - Christopher Hayes Design Portfolio

Download Report

Transcript File - Christopher Hayes Design Portfolio

FOUR SEAT LIGHT
PLANE
Chris Hayes, Matt Mayo, Bryant Ramon
Table of Contents
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
Title Page
Table of Contents
Problem Statement / Description
Requirements
Three-Views / Isometrics (Cessna 172 Skyhawk)
Three-Views / Isometrics (Cirrus SR22)
Three-Views / Isometrics (Cessna 172 Re-Design)
Chapter 1 - Design Proposal
Chapter 2 – Preliminary Estimate of Take-Off Weight
Chapter 3 – Wing Loading Selection
Chapter 4 – Main Wing Design
Chapter 5 – Fuselage Design
Chapter 6 – Horizontal and Vertical Tail Design
Chapter 7 –Engine Selection
Chapter 8 – Take-off and Landing
Chapter 9 – Enhanced Lift Design
Chapter 10 – Structural Design and Material Selection
Chapter 11 – Static Stability and Control
Chapter 12 – Cost Estimate
Chapter 13 – Design Summary and Trade Study
Regulatory Compliance
Performance Quote
Final Rendering of our model
Final Rendering of our model (cont.)
Conclusions
Problem Statement / Description
Your team works for Cessna and you’ve been charged with
proposing a new design to replace/complement the Skyhawk.
Your team will propose a new design that can out perform
Diamond/Cirrus designs all with the prestigious Cessna
nameplate. Your proposal should include a recommendation
on 172 retirement, launching a replacement design,
upgrading the 172 only or leaving the 172 as is and
launching a new design.
Requirements
Performance Item
Design Payload (Non-Expendable)
Passenger Allowance
Cabin Length/Width/Height
Design Payload (Expendable)
Design Range w/Max Payload
Design Time-on-Station w/Max Payload
Stall Speed
Max Cruise Speed = Max Mach
AEO Takeoff Field Length
OEI Takeoff Field Length (BFL)
Landing Field Length
AEO Rate-of-Climb
OEI Rate-of-Climb
Glide Slope
Max Sustained Turn Rate
Max Instantaneous Turn Rate
Service Ceiling
Unit Cost
Development Cost
Altitude/Ambient
ISA
ISA
Solve / ISA
Solve / ISA
Sea Level / ISA
Cruise Altitude / ISA
Sea Level / ISA
Sea Level / ISA
Sea Level / ISA
Sea Level / ISA
Sea Level / ISA
(Cruise Altitude/2) / ISA
Cruise Altitude / ISA
Cruise Altitude / ISA
Solve / ISA
-
Velocity/Mach
Vmax
Vmax
Vmax
Vmax / Vbe
Solve
Solve
Vtakeoff
Vopt
Vopt
Vopt
Vopt
Vopt
-
Flaps
Clean
Clean
Clean
Clean
Clean
Clean
Flaps
Flaps
Flaps
Clean
Flaps
Clean
Clean
Clean
Clean
-
Weight
Wo
Requirements/ Targets
1 Pilot / 3 pax
250 lbs/pax
12’/4’/4’
Wo
0
Wo
800 nm
Wo
0
Wo
<45 nm/hr
Cruise
>160 nm/hr
Wo
<1,800 ft
Wo
n/a
Wo-(Wf/2) <1,500 ft
Wo
>900 ft/min
Wo
n/a
Landing
<3 deg
Cruise
>2 deg/s
Cruise
>2.5 deg/s
Cruise
>20,000 ft
<$350,000
<$11M
Three-Views / Isometrics
• Cessna 172 Skyhawk
Source: http://www.theblueprints.com/en/blueprints/modernplanes/cessna/18078/view/cessna_172_skyhawk/
Three-Views / Isometrics
• Cirrus SR22
• Source: http://servicecenters.cirrusdesign.com/TechPubs/pdf/POH/sr22-002/pdf/20880-002InfoManual.pdf
Cessna 172 Redesign
Design Proposal
• Re-Designing the Cessna 172 Skyhawk
• Passenger allowance of 250 lbs/pax
• Cabin Dimensions of 12’/4’/4’
• Design Range (with Max Payload) of 800 nm
• Faster cruise than Cirrus SR22
Preliminary Estimate of Take-off Weight
Design Weight Summary
Assumptions(using Corke atmosphere model) Mission Analysis Summary
• SFACT: 0.5280
Parameter
Symbol
Empty Weight (lb)
We
• Corke Table 2.3
Payload (lb)
Wp
-Expendable
Wpe
• Lift-to-Drag ratio: 13.0
-Non-expendable
Wpne
Fuel Load (lb)
Wf
• Corke Figure 2.4
-Mission Fuel Burned
Wfb
-Reserves Fuel
Wr
• SFC: 0.7713
-Trapped Fuel
Wtf
Design Takeoff Gross Weight (lb)
Wo
• Updated with Engine Spreadsheet
Surplus Empty Wt. (lbs)
Design Problems
Benchmarking
Janes W0
Cessna Redesign W0
Del%
Cirrus SR22
3,600 (lb)
3,967.0 (lb)
10.2%
heavier
Cessna 172
2,450 (lb)
3,967.0 (lb)
61.9%
heavier
Value
2,094.6
1,000.0
0.0
1,000.0
872.4
823.0
41.2
8.2
3,967.0
0.00
(W/Wo)
Weight
Fraction
0.5280
0.2521
0.0000
0.2521
0.2199
0.2075
0.0104
0.0021
1.0000
Wing Loading Selection
Assumptions(using Corke atmosphere model)
• Cl,max: 2.314083922
• Chapter 4 spreadsheet
• Cd0: 0.0161
• Chapter 7 spreadsheet
• e: 0.8
• Accepted value given by Corke
• Takeoff Max Thrust: 906 lbs
• Calculate to obtain climb rate
Benchmarking
Jane’s W/S
Cessna Redesign W/S
Del%
Cirrus SR22
24.8
17.81
28.2%
Cessna 172
14.1
17.81
26.3%
Design Wing Loading Summary
Wing Loading Selection Summary
Design Wing Loading
No.Flight Regime
W/S (lb/f^2)
Parameter
1AEO Take-off
S_TO (f)
2Landing
17.81
Value
Target
Del%
945.8
1800.0
-47%
S_L (f)
1,119.9
1500.0
-25%
3Cruise Start
S (f^2)
222.7
4Cruise End
H (f)
5AEO Climb
dH/dt (f/min)
731.1
900
-19%
6Acceleration
n
7.149
7Turn - Instantaneous
psi_dot (deg/s)
7.270
2.5
191%
8Turn - Sustained
psi_dot_act (deg/s)
7.259
2.0
263%
9Ceiling
H (f)
36,937.4
20000
85%
2.490
3
-17%
47.6
45
6%
10Glide
Gamma (deg)
11Stall Speed
Vstall (ktas)
Design Problems
10,000.0
Main Wing Design
Assumptions(using Corke atmosphere model)
• Aspect Ratio: 7.5
• JAWA 2013
• Not required for light airplanes
• Airfoil: NACA 2412
•
Same airfoil as the Cessna 172S
based on wikipedia
• Interference factor: 1
•
Corke Table 4.2
Benchmarking
40.87 ft
0.250
5.45 ft
5.45 ft
5.4 ft
b
0.9682
CLa
0.0863 1/deg
CLo
0.1726
atrim
CLtrim
k
CD
L/D
Total Drag
0.54 deg
0.2192
0.0531
0.0133
16.48
185.9 lbf
Design Problems
Cirrus SR22
Cessna 172
Cessna Redesign
10
7.32
7.5
Taper Ratio
1
1
LE Sweep
0
0
Max (t/c)
.28
.12
.12
Airfoil
Description
Roncz
NACA 2412
NACA 2412
1.7
1.5
CL,Max
b
Meff
cr
ct
m.a.c.
• LE Sweepback: 0
Aspect Ratio
Main Wing Design Summary
Fuselage Design
Assumptions(using Corke atmosphere model)
Viscous Drag Calculations:
• Inverse Fineness: 7.11
x/L
x (ft)
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
• Corke Table 5.11
• Max Diameter: 4.5
• Design Driver
• Interference factor: 1
• Corke page 107
• Fuselage shape: Elliptical Cylinder
•
Fuselage Design Summary
Elliptic Cylinder Fuselage Shape
H (ft)
0.0
3.2
6.4
9.6
12.8
16.0
19.2
22.4
25.6
28.8
32.0
W (ft)
1.00
2.50
4.50
4.50
4.50
4.50
4.00
2.40
1.40
0.90
0.50
P (ft)
1.00
2.50
4.50
4.50
4.50
4.50
4.00
2.40
1.40
0.90
0.50
Sw(ft^2)
3.1
7.9
14.1
14.1
14.1
14.1
12.6
7.5
4.4
2.8
1.6
Totals:
subsonic
Benchmarking
Cirrus SR22
Cessna Re-Design
Del%
Inverse Fineness
5.4
7.11
31.7%
Max Diameter
4.8
4.5
6.3%
Total Drag
90
61.3
31.9 %
Cessna 172
Cessna Re-Design
Del%
Inverse Fineness
6
7.11
18.5%
Max Diameter
4.75
4.5
5.3%
Total Drag
37.5
61.3
63.5%
Design Problems
25.1
45.2
45.2
45.2
45.2
40.2
24.1
14.1
9.0
5.0
298.6
Rex
4.5E+06
9.0E+06
1.4E+07
1.8E+07
2.3E+07
2.7E+07
3.2E+07
3.6E+07
4.1E+07
4.5E+07
CF
3.40E-03
3.04E-03
2.85E-03
2.72E-03
2.63E-03
2.56E-03
2.50E-03
2.45E-03
2.41E-03
2.37E-03
Drag (lbf) Volume (ft3)
6.4
10.2
9.6
9.2
8.8
7.6
4.5
2.6
1.6
0.9
8.2
31.6
50.9
50.9
50.9
45.4
26.3
9.3
3.4
1.3
61.3
278.1
Horizontal and Vertical Tail Design
Assumptions(using Corke atmosphere model)
• Aspect Ratio: 1.3 vertical, 3 horizontal
• Corke Table 6.5 in range
• Taper Ratio: 0.5, 0.5
• Corke Table 6.5
• LHT / LVT: 18 ft / 18 ft
• Corke page 126
Benchmarking
Cirrus SR22
Cessna
Redesign
Aspect Ratio
1.3/3.0
Taper Ratio
0.5/0.5
LE Sweep
35/15
Max (t/c)
0.35/0.35
Airfoil Description
NACA 63-006
CL,Max
0.8/0.8
Tail Design Summary
Tail Design Summary
Conventional
T-Tail
Cruciform
H-Tail
V-Tail
Inverted V-Tail
Y-Tail
Twin Tail
Control Canard
Lifting Canard
Total
Drag (lbf)
56.9
54.3
56.1
58.1
53.6
53.6
55.8
59.8
56.9
56.9
Del%
Base
-4.6%
-1.5%
2.1%
-5.9%
-5.9%
-1.9%
5.1%
0.0%
0.0%
Main
Wing
Airfoil Section
Max Thickness, %
LE Sweep, deg
Aspect Ratio, dCL/da, 1/deg
0.120
0.0
VT TE
Sweep (deg)
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
Vertical
Tail
Horizontal
Tail
NACA 63-006
0.060
35.0
1.300
0.0320
NACA 63-006
0.060
15.0
3.000
0.0594
Design Problems
Engine Selection
Assumptions(using Corke atmosphere model)
Design Parameters
Cessna Redesign
Gross Weight
3,967.0 lbs
Reference Wing Area
222.7 ft^2
Wing Loading
17.81
Cruise Altitude
10,000 ft
Cruise Speed/Mach
159.5/0.25
Bleed
0.02
Reference Engine
PT6A-50
Engine Scale Factor
1.0
Scaling Methodology
Eqns. 7.8-7.11
Engine Selection Summary
Engine Selection Summary
Number of Engines
Uninstalled Engine Power, SLS ISA Max
Reference Engine
Engine Scale Factor
Type of Engine
Ave. SFC, @ Design Cruise
Engine Weight
Engine Length
Engine Max Diameter
Propeller Diameter
# of Blades
Benchmarking
Engine
Cirrus SR22
Cessna 172
Cessna Redesign
Power
160
945
SFC
0.4313
0.7494
Weight
430.72 lbs
258 lbs
215.6
Length
38.43 in
33.6 in
39.6 in
Width: 18 in
Height: 25 in
Width: x in
Height: x in
Diameter
Propeller
Diameter
6.667 ft
6.25 ft
7 ft
Number of Blades
3
2
2
Design Problems
Value
1
945.0
PT6A-50
1.000
Turboprop
0.7494
215.6
39.6
19.6
7
2
Units
shp/eng
lbm/hr/shp
lbf/eng
in
in
ft
-
Take-off and Landing
Assumptions(using Corke atmosphere model)
Takeoff and Landing Summary
Takeoff and Landing Summary
Design Parameters
Cessna Redesign
Gross Weight
3274
Reference Wing Area
222.7 ft^2
Wing Loading
Design Gross Weight
Altitude
Engine Thrust
Stall Speed
lbf
ft
lbf/eng
nm/hr
Field Lengths
AEO Takeoff
OEI Takeoff
Landing
ft
ft
ft
9.21
Gear Frontal Area
151.58 ft^2
Takeoff/Landing
Flap deflection angle
30/60
Cl_max
1.1/1.55
Obstacle Height
50/50
Friction Coefficient
0.4 (Roll0/0.5 (Brake)
Rationale
Adjust lift curve
Regulatory Compliance
AEO, Gear Up Vy
ft/min
OEI, Gear Up Vy
ft/min
OEI, Gear Up G
%
OEI, Gear Down G
ft/min
Benchmarking
Design Problems
Cirrus SR22
Cessna 172
AEO field length
OEI field length
Landing field length
3967
0
906
47.7
Cessna Redesign
961/1061
-
-
961/1061
2,021
#NAME?
2,231
704
0
0.0%
0.0%
Enhanced Lift Design
Flap Design Summary
Type of TE Flaps
LE Flaps
Flap Area / Wing Area, Swf/Sw
Flap Deflection Angle, df
Flap Chord / Wing Chord, cf/c
Flap Span / Wing Span, bf/b
CL,max
DCDo, flaps
Design
plain
No
0.50
40.00
0.40
Units
deg
-
0.50
-
2.31
-
0.0863
-
Wing Platform Plot
Wing Planform
Wing Half Span, b/2, (ft)
Assumptions(using Corke atmosphere model)
15
12
9
6
3
0
0
3
6
9
Axial Position, (ft)
Benchmarking
Flap type
Design Problems
Cirrus SR22
Cessna 172
Cessna Redesign
Plain
plain
plain
Flap Chord/ Wing Chord
3.6028/7.2
Flap Span/ Wing Span
21.617/54.04
S_wf/S_w
194.7/389.4
12
15
Structural Design and Material Selection
Wing Platform Plot
V-n Diagram
Structure Material Summary
Structure/Material Summary
X-Section
Material Group
Material
Tension (W1/W2)t
Compression (W1/W2)c
Bending (W1/W2)b
# of Wing Spars
Spar Deflection (in.)
Spar Height < Wing Thickness ?
# of Bulkheads
Bulkhead Spacing (in.)
# of Longerons
Longeron Height < Fuse. Wall
Wing
Wing
Fuselage
Fuselage
Skin
Spar
Skin
Longerons
Airfoil
I Beam
Hollow Ellipse
Hollow Circle
Aluminum
Alloy
Alloy Steels Aluminum Alloy Aluminum Alloy
2024-T3 (clad) 4130 Normalized 2024-T3 (clad) 2024-T3 (clad)
1.000
1.728
1.000
1.000
1.000
2.447
1.000
1.000
1.000
2.211
1.000
1.000
X
1
X
X
X
10.00
X
X
X
YES
X
X
X
X
X
14
X
X
X
28.30
X
X
X
8
X
X
X
YES
Design Problems
Static Stability and Control
Static Stability & Control Summary
Final Weight Breakdown
Static Stability & Control Summary
Weight Summary
Component
Wing
Horizontal Tail
Vertical Tail
Fuselage
Main Gear
Nose Gear
Engine(s)
Remaining Components
Empty Weight
Design Gross Weight
Empty Weight Fraction
Symbol
Wwing
Wh-stab
Wv-stab
Wfuse
Wmain lg
Wnose lg
Weng
Wrem
We
Wo
We/Wo
Fighter
Transport
631
512
67
18
20
41
794
888
112
77
59
30
553
553
674
674
2,910
2,793
3,967
3,967
0.734
0.704
Rudder Design
V-Stab Span, (ft)
5
4
3
2
1
0
2
4
Axial Position, (ft)
Static Margin
-Center of Lift
-Center of Gravity
-Static Margin @ Wcr, start
-Dtrim / Dtotal
Stability Coefficients
-Longitudinal, Cm,a
-Lateral, CL,b
-Directional, Cn,b
Rudder Area
ValueComments
0.3553xcl/L
0.3401xcg/L
9.0%stable
0.146Dtrim high, See Corke Page 279
-0.0019stable
-0.1715stable
0.1715stable
2.3ft2
Design Problems
V-Stabilizer Planform
0
General
Aviation
487
26
26
303
180
32
595
555
2,204
3,967
0.556
6
Corke: -1.5<Cm,a<-0.16
Corke: 0.08<Cn,b<0.28
Cost Estimate
Pie Chart (1986 CER’s)
Cost Estimate Summary
C_P ($)
9%
Cost Estimate Summary
Year
Number of Development Aircraft
Number of Production Aircraft
Production Rate (per month)
Amortization Period (# of ac)
2013
2
5300
50
4000
1986 CERs Cost Estimate in C_E ($)
5%
2013Dollars
C_QC ($) C_EN ($)
1%
7%
C_T ($)
5%
C_MM ($)
25%
Initial Unit Cost (1986 Model)
Final Unit Cost (1986 Model)
Initial Price Markup
Profit (%)
C_D ($)
1%
C_ML ($)
47%
$689,852
$661,368
4%
10
Proposed Cost vs. Requirement
Proposed Cost
Requirement
Del %
$661,368
$350,000
89.0%
Design Problems
Trade Summary
Design Summary
172 Re-Design Cessna 172
Weights
W_TO (lb)
W_S
W_F (lb)
W_P (lb)
s_fact
Wing
S (ft^2)
b (f)
W/S (lb/ft^2)
Fuselage
L (f)
H(f)
Engines
# of
T_max (lb)
T/W
Takeoff/Landing
S_TO (ft)
S_L (ft)
Cirrus SR22
3967
2094.6
872.4
1000
0.528
2189.4
1402.2
188.2
599
0.6404
2077.8
1243.3
234.5
600
0.5984
222.7
40.87
17.81
139.6
36.08
15.68
145
38.33
22.07
32
7
27.2
8
26
8.92
1
906 ?
0.2284 ?
1
Trade Study
• Wanted to see the effect of a more
efficient engine or increased cruise
Mach would have on range
1
?
?
2021.1
1324.6
1630
1335
1756
1178
Trade Study Results
Cruise Mach vs Range (nm)
Range (nautical Miles)
1400.0
1200.0
1000.0
800.0
600.0
Range (nm)
400.0
200.0
0.0
0
0.5
1
1.5
2
Specific Fuel Consumption (lb/(lbf·h))
Range (nautical miles)
Specific Fuel Consumption vs Range (nm)
870
860
850
840
830
820
810
800
790
780
770
760
0
0.1
0.2
0.3
0.4
Cruise Mach
0.5
0.6
0.7
0.8
Regulatory and Design compliance
Regulatory Compliance
Certification (FAR Part 23)
Velocities
Takeoff Climb Gradient
Rolling Friction
Obstacle Height
Emergency Exits
Max Load Factor
Design Compliance
Airfoil Cross Section, Taper, Sweep
Crew Sight Lines
Fuselage Volume
Tail Geometry
Tail Geometry – Aft VT TE Sweep<20 deg page 136
Tail Placement – Stall Control
Tail Placement – Spin Recovery
Propeller Tip Speed/Mach < 0.85
Longitudinal Static Stability
Directional Static Stability
Trim Drag
Corke Reference
Your Design
Status
V_TO>1.1Y_Stall
300 fpm @ sea level
n/a
50 feet
1 type IV
load factor <3.1
Compliant
compliant
n/a
n/a
compliant
compliant
Sections 4.1-4.3
Table 5.8, page 95
Section 5.1
Tables 6.1-6.6, pages 123-128
compliant
compliant
compliant
compliant
compliant
compliant
compliant
compliant
compliant
compliant
compliant
Figure 6.9, page 129
Figure 6.10, page 131
page 152
Equation 11.26
Equation 11.45
Equation 11.61
Performance Quote
Performance Item
Requirements/
Targets
Proposed
Design
-Design Payload (Non-Expendable)
-Passenger Allowance
-Cabin Length/Width/Height
-Design Payload (Expendable)
-Design Range w/Max Payload
-Design Time-on-Station w/ Payload
-Stall Speed
-Max Cruise Speed = Max Mach
-AEO Takeoff Field Length
-OEI Takeoff Field Length (BFL)
-Landing Field Length
-AEO Rate-of-Climb
-OEI Rate-of-Climb
-Glide Slope
-Max Sustained Turn Rate
-Max Instantaneous Turn Rate
-Service Ceiling
-Unit Cost
-Development Cost
1 Pilot / 3 pax 4
250 lbs/pax
12’/4’/4’ (192 ft^3)
0
800 nm
0
<45 nm/hr
>160 nm/hr
<1,800 ft
n/a
<1,500 ft
>900 ft/min
n/a
<3 deg
>2 deg/s
>2.5 deg/s
>20,000 ft
<$350,000
<$11M
n/a
250lbs/pax
194 ft^3
0
800 nm
0
47.6 ktas
158.5 ktas
2021.1 ft
n/a
1324.6 ft
704 ft/min
n/a
2.49 deg
5.64 deg/s
7.27 deg/s
36,900 ft
$689,850
$113,900,000
Delta%
Cessna 172
Cirrus SR 22
4
n/a
1%
n/a
0%
n/a
-5.7%
-0.9%
4
250
158 ft^3
0
640 nm
0
48 ktas
124 ktas
1630 ft
n/a
1335 ft
730 ft/min
n/a
6.34 deg
22.2 deg/s
13.8 deg/s
14,000 ft
$364,000
$68,200,000
250
184 ft^3
0
400 nm
0
60 ktas
183 ktas
1756 ft
n/a
1178 ft
1270 ft/min
n/a
5.95 deg
17.6 deg/s
11.11 deg/s
17,500 ft
$664,900
$141,800,000
n/a
11.7%
n/a
17%
182%
190.8%
84.5%
97.1%
-935.5%
Final Rendering of our model
Final Rendering of our model (cont.)