Слайд 1 - nral.org

Download Report

Transcript Слайд 1 - nral.org

Risk assessment of nature extreme events in the coastal zone

Dangerous hydrological phenomena in the river mouths and their relation to synoptic situation

N.I.Alekseevsky, D.V.Magritsky, N.M.Yumina, I.N.Krylenko, D.N.Aibulatov, G.S.Ermakova, E.Antohina

D.Gutchina

Environmental - economic zones of coast (EEZC) of the European part of Russia

Structure and impact degree of dangerous processes and phenomena depending on features of EEZC districts

Time scales of dangerous hydrological phenomena (DHP) and hydrology-morphological processes in the river mouths

Linear scales of dangerous hydrological phenomena (DHP) and hydrology-morphological processes in the river mouths

Genetic classification of the dangerous hydrological phenomena

List of hydrological data needed to assess the social and economic damages and risks • Type and coordinates of DHP-occurrence • Intensity of the dangerous hydrological phenomena (for Damage) • Duration of dangerous hydrological events and the residual phenomena (for Damage) • Exposure area SIFVI=(SSI-3)*( Exposure_area *10)*(IDI*10) SIFVI: social and infrastructure Flood Vulrability Index SSI: Social Susceptibility Index IDI: Infrastructure Density Index • Probability (frequency) of dangerous hydrological events of certain intensity RISK=f(

Probability

, Damage) • Other parameters

Data source for assess and prediction the social and economic damages and risks

1. The Catalogue of the dangerous hydrological phenomena 2. Data of hydrological monitoring on stations and from the satellites 3. Field studies 4. Statistic, geographic analysis 5. Computer simulation

The catalogue of the dangerous hydrological phenomena

sections

1. Water object code 2. Water object name 3. Chronology of DHP 4. Type of DHP 5. Factors (origin) of DHP 6. A brief description of the dangerous hydrological phenomena and events 7. Parameters of DHP (3 parts) 8. Hydro-meteorological conditions (H, Q, v, t, x) 9. The economic and social damage 10. Data source

The catalogue of the dangerous hydrological phenomena

data sources and structure • • • • ~760 events:

Inundations – 644

Low water – 83 Seawater intrusions – 13 Others - 20 50 40 30 20 10 0 %

Comparison of the river mouths on a set and degree of hazard of DHP

The dangerous hydrological phenomena in the Kuban river mouth

• Water-flow and ice-jam inundations • Storm surges • Dangerous ice phenomena • Heavy sea • Low water Chronology of inundations for period 140 yrs.

Structure of inundations for period 100 yrs.

60 % cases 40 20 0 1877 1897 1917 1937 1957 1977 1997 water flow water flow+ice jam srorm surge

Flow-water inundations in the Kuban river delta

Precondition Flood-control system Results

Q

Spring high water I. flood-control reservoirs Repeatability of years

H

max >

H

critical Summer high water Rain and snow-melt floods (autumn-winter) 

R

Q

max 

t

 0 

t

   0

z

 

t

H

max  0  

t

H

 

t

0  0 II. flood-control dams The mean number of days per year

H

max >

H

critical 1929-1972 1973-2003 The mean depth of flooding of a flood plain

Ice jams and ice-jam inundations in the Kuban river delta River reaches of ice-jam formation Ice-jam inundation of winter 2001-2002 yr.

Frequency of ice jams (1912-2002 yrs.)

Long-term variability of the ice phenomena in the Kuban river delta The period with ice phenomena Cases of Ice jams formation for different periods Ice thickness

Flood zone and propagation length of backwater in the branches

Storm surges in the Kuban river mouth

l ss

 ln( 

H s

/ 

H

min )

k

2 

H

min  0 , 10  0 , 05 m

k

2  4 , 5

Q

 4

Zk

 0 , 033 Probability curve

The dangerous hydrological phenomena in the Don river mouth and their long-term variability 540 520 500 480 460 440

H

, см

пост Темрюк-порт

420 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

The dangerous hydrological phenomena in the Neva river mouth and their long-term variability • • • Storm surges (delta) Underflooding (delta) Ice-snow jam (deltaside river section)

Flood zones

H=200 cm BS H=500 cm BS

Expedition to the river mouths of Black sea

august 2011

Hydraulic models of water stream movement 1.

«Flood» and «River» (V.V.Belikov) 2. Mike 11, Mike 21 (Denmark) 3. Delft 3D (Netherlands) 4. «HEC-RAS» (USA) 5. «TELEMAC» (France) Simulation result of flooding of the Terek river delta (model and calculations of V.V.Belikov)

Hydrological models of runoff formation basin model ECOMAG (

author - Motovilov Y.G

.) input data, structure, results

100 80 60 40 20 0 0 20

R корр 2 = 0.82

40 2009 г.

60

Results of computer simulation

2005 г.

25000 Q, м³/с 20000 смоделированная влажность почвы, % смоделированная суточная сумма осадком, мм смоделированные расходы воды, м3/с фактические расходы воды, м3/с смоделированный запас воды в снеге, cм смоделированная температура воздуха, С

р. Северная Двина - с. Усть-Пинега

% мм см С° 40 30 20 10 15000 10000 5000 0 Июнь 2008 40000 Q, м³/с Август 2008 35000 Октябрь 2008 Декабрь 2008 Февраль 2009

р. Печора - с. Оксино

Апрель 2009 30000 25000 20000 15000 -40 Июнь 2009 Август 2009 Октябрь 2009 Декабрь 2009 смоделированная влажность почвы, % смоделированная суточная сумма осадком, мм смоделированные расходы воды, м3/с фактические расходы воды, м3/с смоделированный запас воды в снеге, cм смоделированная температура воздуха, С % мм см С° 40 30 0 -10 -20 -30 20 10 0 -10 2001 г.

W факт. пол., км³

80 100 10000 5000 0 Август 2003 Октябрь 2003 Декабрь 2003 Февраль 2004 Апрель 2004 Июнь 2004 Август 2004 Октябрь 2004 -20 -30 Декабрь 2004 -40

The forecast of runoff changes

Input:

12 Atmosphere Ocean General Circulation Models data

T

0

Calculation:

Climate-driven hydrological model

Y = f (T 0 , P)

Result:

Runoff changes estimation

P

AOGCMs : CMIP3:CCSM3, CGCM3.1, CNRM-CM3, CSIRO-Mk3.0, ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MIROC3.2, MRI CGCM2.3.2А, PCM, IPSL CM4, MIUB ECHO G resolution: 2 °×2° basic period: 1961-1990 yrs.

forecasting period: 2046-2065 yrs.

1)

Y

obs 

f

   clm

P

E

 

b E E

0 

E

0  6 ,    1

2)

Cv

(

P

E

) 72 

E

0

n P n

T

0    1

n

equation proposed by Mezentsev

n

– empirical coefficient

T 0

– sum of positive temperature ( ºC) 

Cv P

[( 1  

E

P

) /( 1 

E P

)] 

G Cv

(

P

E

)

V

Shrider

V

Mezentsev 

Cv P

V

(

I

)

I

E

0

P

 1 

I

 ( 1 

I n

 1 )  1 

I n

  (

n

 1 ) /

n

•Y 2050, Y 2050max, Y 2050min •Maps of Ky=Y 2050 /Y bas.period

•Maps of K Cv =Cv 2050 /Cv bas.per

iod •Probability curves /( 1 

I

[ 1 

I n

]  1

n

The forecast of annual runoff change of the Severnaya Dvina river

Minimum value

Ky

Mean value

Ky

Maximum value

Ky

500 450 400 650 600 550 350 300 250 0.01

0.050.10.2 0.5 1 2

1990 2050

5 10 20 30 40 50 60 70 80 90 95 98

P,%

The synoptic situations associated to various origin floods

Thank you for your attention!