Heat Integration

Download Report

Transcript Heat Integration

An Introduction to
Heat Exchanger Network (HEN)
Design
By:
Anwaruddin Hisyam
Pinch technology series
1
In this lecture we will learn how to set energy
recovery targets for a process.
Pinch technology series
2
Pinch identification
Pinch technology series
3
Base case
178 C
1620
880
160 C
180 C
130 C
60 C
2640
210 C
Reactor
270 C
160 C
210 C
149 C
1220
50 C
1980
Pinch technology series
220 C
4
Data Extraction
178 C
1620
880
160 C
180 C
130 C
60 C
2640
210 C
Reactor
270 C
160 C
210 C
149 C
1220
50 C
1980
Pinch technology series
220 C
5
…..from data extraction
160 C
130 C
210 C
Reactor
270 C
160 C
210 C
50 C
220 C
Pinch technology series
60 C
6
Stream Data (Problem Table)
T source,
C
T target,
C
1
220
60
3520
22
Hot
2
270
160
1980
18
Hot
3
50
210
3200
20
Cold
4
160
210
2500
50
Cold
No
Heat duty,
kW
CP
Type
CP = Heat duty/ABS(T source – T target)
Pinch technology series
7
Composite Curve
Composite Curve
Temp interval (K)
300
DT min
250
200
150
100
50
0
0
1000
2000
3000
4000
5000
6000
7000
Heat duty (kW)
Pinch technology series
8
Set DTmin = 20 C
Pinch technology series
9
Shifted Stream Data
Hot - ½DTmin; Cold + ½DTmin
T source,
C
T target,
C
1
210
50
3520
22
Hot
2
260
150
1980
18
Hot
3
60
220
3200
20
Cold
4
170
220
2500
50
Cold
No
Heat duty,
kW
Pinch technology series
CP
Type
10
Shifted Composite Curve
Temp interval (K)
Shifted Composite Curve
300
250
200
150
100
50
0
0
1000
2000
3000
4000
5000
6000
7000
Heat Duty (kW)
Pinch technology series
11
Cascade Diagram
Stream population
Cold
Hot
ColdHot
260
0
720
-720
SURPLUS
700
180
520
DEFICIT
2800 1600
1200
DEFICIT
400
-400
SURPLUS
1800 1980
-180
SURPLUS
0
-220
SURPLUS
220
50
210
18
170
20
800
150
22
60
220
50
Pinch technology series
12
Heat balance in the interval
Hot utility
0
260
-720
Heat
flow
720
220
520
200
210
1200
170
-400
150
- 1000
- 600
-180
60
-220
50
- 420
- 200
Cold utility
Pinch technology series
13
The heat flow must NOT be
negative
Pinch technology series
14
Normalization
Hot utility
0
260
-720
720
220
520
200
210
1200
170
-400
150
- 1000
Need
additional
heat
- 600
-180
60
-220
50
- 420
- 200
Pinch technology series
Cold utility
15
Original Grand Composite Curve
300
Unfeasible
region
250
200
150
100
Feasible
region
50
0
-1200 -1000 -800
-600
-400
-200
0
Pinch technology series
200
400
600
800
1000
16
…finding pinch
Hot utility
1000
260
-720
1720
220
520
1200
210
1200
170
-400
150
0
No heat flow
at this point
400
-180
60
-220
50
580
800
Pinch technology series
Cold utility
17
Grand Composite Curve
Temp interval (K)
300
Qh min
250
200
150
100
50
Qc min
0
0
500
1000
1500
2000
Heat duty (kW)
Pinch technology series
18
finally….
The PINCH POINT = 170 C
which means that
Hot stream PINCH = 170+½DTmin = 180
Cold stream PINCH = 170-½DTmin = 160
Pinch technology series
19
Heat source and sink

Composite Curve
Temp interval (K)
300
PINCH
250

200
150
100
50
Heat Source
0
0
1000
2000
Heat source 
this part releases
heat
Heat sink  this
part requires heat
Heat Sink
3000
4000
5000
6000
7000
Heat duty (kW)
Pinch technology series
20
and,
how can we design HEN
based on the pinch?
Pinch technology series
21
Base case….the existing network
2640
60
880
220
C
1980
160
270
50
210
H H
1220
160
1620
H
210
Heat recovery = 1980 + 880 = 2860 kW
Cold utility = 2640 kW
Hot utility = 1220 + 1620 = 2840 kW
Pinch technology series
22
Let’s start from
the pinch
Pinch technology series
23
PINCH
AT 170
BELOW
CP
ABOVE
180
2640
22
60
220
880
180
360
18
160
270
160
2200
20
50
1640
210
1000
210
2500
160
0
50
160
Pinch technology series
24
Rules….

CP in ≤ CP out


N stream IN ≤ N stream out




Start finding partners for streams OUT (with streams IN,
away from pinch, or utility)
If Ns IN > Ns OUT, split stream(s) OUT
If CP in > CP out (no match), try to split stream(s) IN
Set maximum heat recovery
The remaining heat duty is covered by heater or
cooler
Pinch technology series
25
Step 1: Below the PINCH
Connect S1(22) and S3(20)
CP in < CP out
180
60
220
1
180
160
2200
50
√
1
2200
270
160
210
160
160
Pinch technology series
210
26
Step 2: Above the PINCH
Connect S2(18) and S4(50)
CP in < CP out
180
60
220
1
180
160
2200
50
√
1
2200
1620
2
160
√
270
1620
210
160
160
Pinch technology series
2
210
27
Step 3: Above the PINCH
Connect S1(22) and S4(50)
CP in < CP out
880
180
60
1
3
1620
180
160
2200
50
√
1
2200
√
√
2
160
880
270
1620
210
160
160
220
3
Pinch technology series
2
√
210
2500
28
Step 4: Above the PINCH
Install Heater at S3(20)
880
180
60
1
1620
180
160
2200
50
√
1
2200
√
3
2
880
270
1620
1000
160
H
160
160
√
√
√
220
3
Pinch technology series
2
210
1000
210
2500
29
Step 5: Below the PINCH
Install Cooler at S1(22) and S2(18)
440
2640
60
C
1
√
2200
160
50
√
1
2200
√
3
360
360
880
180
C
1620
180
√
2
880
270
1620
1000
160
H
160
160
√
√
√
220
3
2
210
1000
210
2500
All heat requirements have been met !!!
Pinch technology series
30
…finally…
Heat Exchanger Network (HEN)
880
60
C
220
1620
440
160
C
270
360
1000
H
50
210
2200
160
210
Maximum Energy Recovery (MER) = 2200 + 880 + 1620 = 4700 kW
Minimum cooling heat duty (Qc min) = 440 + 360 = 800 kW
Minimum heating heat duty (Qh min) = 1000 kW
Pinch technology series
31
Then draw the flowsheet…
177.6 C
880
160 C
1620
180 C
130 C
360
210 C
Reactor
270 C
160 C
210 C
160 C
220 C
180 C
1000
50 C
440
2200
60 C
80 C
Pinch technology series
32
Possible modifications
Pinch technology series
33
Grand Composite Curve
Temp interval (K)
300
MP steam
250
200
150
100
Heat
generation
50
Cooling water
0
0
500
1000
1500
2000
Heat duty (kW)
Pinch technology series
34
Pinch technology series
35
Working Session
Pinch technology series
36
How will the HEN be….?
Feed 2
H= 27 MW
230 C
H=-30 MW
140 C
200 C
Product 2
80 C
Reactor 2
Feed 1
20 C
180 C
250 C
40 C
H=32 MW
40 C
Reactor 1
H= -31.5 MW
40 C
Product 1
Pinch technology series
37