Transcript heat_ppt

RND Center for
Hybrid Energy Sources
Electro-Thermal Analysis
of Lithium Ion Batteries:
Experimental and Numerical study
Gad A. Pinhasi
The Israeli Fuel Cell and Batteries Center (IFCBC) Conference
26 January 2011, Tel Aviv University
1
Outline
• The Objective
• The Project
• Background
– Internal Resistance
– Heat Generation
• The Study
• Experimental Setup
– Calorimeter
• Models
– Lumped heat model
– CFC model
• Results
– Cell
– Battery
– Pack 4
• Conclusions
• Summery
2
The Objective
• Thermal Analysis and Design of a Large
Battery Pack.
• To evaluate the heat generation and
temperature field under various electrical
loads and design specifications.
– Safety: Thermal Runaway
– Max. Temperature restriction:
– “Passive cooling” solutions
3
The Project
• Evaluation of Heat
Generation:
– Source term
– Experimentally
• Calculation of the
Temperature Field
– Numerically
• Cell, Battery, Packs : 4,
92
4
Cell, Battery and Packs
Type
Cell
Battery
Pack 4
ICR18650
Samsung
MR-2791
YT-600
24 cells
4 bat
91(+1) bat
4S×6P
4P
7S×13P
Voltage:
[V]
3.7
16.8
16.8
Capacity:
[Ahr]
2.6
14.4
57.6
Discharge
currents
[A]
0.2, 0.4, 1
3, 4, 8
32
Pack 92
5
Introduction
• Evaluation of Heat
Generation
– Experimentally
• Calculation of the
temperature field
– Numerically
• Model Approaches
• Thermal characterization
• Battery Internal
6
Model Approaches
• Fundamental models
• physical foundations
principles
– Transport Phenomena
• Phenomenological
models
• Equivalent circuit
models
7
Thermal characterization
• The heat produced due to:
• Joule heat of the electrical
resistance
• Polarization heat
• Reaction heat
qgen  qJ  qp  qr
VOC
qgen  iVOC V   iT
T
– initially exothermic during
discharge
– reversible
8
Battery Internal Resistance
• The cell voltage under
load is :
– Open circuit voltage
– Internal Ohmic resistance
– “Concentration
polarization”
– “Charge transfer
polarization”
V  VOC  diff  ch,tr  iRi
• Methods for
Determining the
Internal Resistance
–
–
–
–
Ohm’s Law
Joule’s Law
AC Resistance
Electrochemical
Impedance Spectroscopy
(EIS)
9
Internal Resistance Dependence
• Temperature
– Decreasing with Temperature
• State of Charge (SoC)
• State of Health (SoH)
Yurkovich et al. (2009)
10
Internal Resistance and Heat Generation
• Joule heat of the
electrical resistance
• Open circuit voltage
V0  V
Rel 
i
12
40
0.6
20
Temperature-Water
El. Potential
0.5
8
0.4
El. Resistance:R0=0.176 W
Heat
Electric Resistance
6
0.3
4
0.2
2
0.1
0
0
0
20
40
60
80
Time [min]
100
120
140
36
34
Temperature [C]
10
Electric Resistance [W]
Heat [W]
38
New Battery
Discharge Current: 8 A
Water: 1.2 liter
19
18
Initial voltage
32
17
Start Load
16
30
15
28
14
26
13
24
22
12
20
11
18
10
0
20
40
60
80
Time [min]
100
120
140
11
Electric Potential [Volt]
q
R 2
i
The Study:
Experimental and Numerical
Temperature-oil
6
Temperature-battery
Temperature-room
100
5
80
4
3
40
2
Temperature [C]
40
60
19
El. Potential
Potential [Volt]
Temperature [C]
45
20
Battery 4
Discharge Current: 8 A
oil: 2 kg
18
Initial voltage
17
16
Start Load
35
15
30
14
13
25
20
1
Temperature
Potential
12
20
11
0
0
0
20
40
60
Time (min)
80
100
120
15
0
20
40
60
80
Time [min]
100
12
120
10
Electric Potential [Volt]
50
120
Experimental Setup
Dewar:
Calorimeter
FLUKE:
Data Acquisition
Liquid Bath
Cell/
Battery/
Pack
Charge/
Load
Charge
Load
Silicone Fluid
Dow Corning
DC-200/100 cSt
Temperature
Data logger
13
Calorimeter:
• Batch / Continuous Flow
(SHC) Calorimeter
dT 

 C p w Tw.out  Tw.in   Ws
qgen   mCp i i   m
dt 
i 
Tw,in
Tw,out
Toil,in
14
Numerical Study: Tools
• Computational Fluid
Dynamics (CFD)
• Partial differential
equations (PDEs)
solvers:
– Fluid Mechanics
– Heat Transfer
– Mass Transfer
• (Diffusion)
• Chemical reactions
• COMSOL
Multiphysics
– Batteries & Fuel Cells Module
• ANSYS
– CFX
– FLUENT
15
The Lumped Model
• Cells
mCp1 dT1  V1q  AU 12 T1  T2 
• Heat Transfer
Mechanisms
dt
• Battery Medium
mCp2 dT2  AU 12T1  T2   AU 23T2  T3 
dt
• Pack Medium
mCp3 dT3  AU 23T2  T3   AU 3 T3  T 
T
T1 Cell
T3
T
q 24
2 q”’
U3
U23 U12
”
Battery
’
91
dt
16
Results
• Cell
– Temperature history
– Heat Generation and SOC
• Battery
• The Pack
• Electrical resistance
– Open-circuit voltage
– Heat Generation
17
Samsung 18650
• ICR18650-26C 2600m
Li-ion 3.7v Battery
• Brand :Samsung
• Nominal voltage : 3.7V
• Capacity: 2.6Ahr
• Size 18mm x 65.0mm
• Weight : 48g/pcs
• Made in JAPAN
18
Cell Heat Generation and SOC
2.6A
1A
4
4
12
3.5
3
9
2
6
1.5
1
3
Heat
Electric Power
9
2.5
Heat [W]
2.5
Electric Power [W]
3
Heat
Electric Power
2
6
1.5
1
3
0.5
0.5
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
1-SOC
0.7
0.8
0.9
1
0
0
0
0.1
0.2
0.3
0.4
0.5
0.6
1-SOC
0.7
0.8
0.9
1
19
Electric Power [W]
3.5
Heat [W]
12
Pack 4
• YT-600
• 4 Batteries 2791
• 4P
• Voltage: 16.8 Volts
• Capacity :57.6Ahr
20
70
20
65
19
18
55
17
Initial voltage
50
16
Start Load
45
15
40
14
35
13
30
12
25
11
20
20
40
60
Time [min]
80
100
300
Heat
Electric Power
250
Heat [W]
120
600
zeros
400
150
300
100
200
50
100
0
0
0
20
40
60
Time [min]
80
100
120
• Current: 32A
• Temperature
• Electrical voltage
500
200
Pack 4
– Battery inside
– Battery Gap
– Surrounding water
10
0
Electric Power [W]
Temperature [C]
60
Package 4
Discharge Current: 32A
oil:
Electric Potential [Volt]
Temperature-oil battery
Temperature-oil pack
Temperature-water tank
El. Potential
• Electrical Power
• Heat Power
21
Pack 4: Simulation
• Experiment vs.
Simulation
• Medium Effect:
– air/oil
22
Experiment vs. Simulation
60
Package 4
Discharge Current: 32A
oil:
55
Temperature [C]
50
Points:
Battery
inside
Battery
Gap
Experiment
45
Simulation
40
35
Temperature-oil battery
Temperature-oil pack
30
Temperature-water tank
Temperature-oil battery-calculated
25
0.6W/cell
Temperature-oil pack-calculated
20
0
20
40
60
Time [min]
80
100
120
23
Experiment vs. Simple model
60
Package 4
Discharge Current: 32A
oil:
55
Temperature [C]
50
45
40
35
Points:
Battery
inside
Battery
Gap
Temperature-oil battery
Temperature-oil pack
30
Temperature-water tank
Temperature-oil battery-calculated
25
Temperature-oil pack-calculated
20
0
20
40
60
Time [min]
80
100
120
Temperature [C]
80
TCell
TBat
TPack
60
0.6W/cell
40
20
100
0
20
40
60
time [min]
80
100
120
24
Pack 4: Medium Effect :32A
100min
Tmax :51ºC
Oil •
Tmax :96ºC
Air •
25
Summary
• The heat generation and temperature field for
battery packs were evaluated theoretically and
experimentally
• Internal resistance of a cell was determined by
current step methods and thermal loss methods.
• Future Work:
– Heat generation Correlation
– Dynamic models
– Fundamental models
26
People
• Dr. Gad Pinhasi
– Department of Chemical Engineering and Biotechnology
• Dr. Alon Kuperman
– Department of Electrical Engineering
• Neria Roth
– (M.Sc. Student) Experimental Study
• Itshak Shtainbach
– (M.Sc. Student) Numerical Study
27
Acknowledgment
The research is supported by the ISRAEL
Ministry of Defense : MAFAT
29
30
Conferences
Roth, N., Shtainbach, T.,
Kuperman, A. and Pinhasi, G.A.,
"Electro-thermal Analysis of
Lithium Ion Batteries:
Experimental and Numerical
study”,
1. The 31st Israeli Conference on
Mechanical Engineering - ICME
2010 , Dan Panorama Hotel, TelAviv 2-3 June 2010.
2. The 47th annual meeting of the
IIChE, 2010.
The Israeli Fuel Cell and Batteries
Center (IFCBC) Conference, 2011
31
32