First let u = sin 5θ, dv = e 4θ dθ ⇒ du = 5 cos 5θ dθ, v
Download
Report
Transcript First let u = sin 5θ, dv = e 4θ dθ ⇒ du = 5 cos 5θ dθ, v
First let uR= sin 5θ, dv = e4θ dθ ⇒ duR= 5 cos 5θ dθ, v = 41 e4θ .
Then I = e4θ sin 5θ dθ = 14 e4θ sin 5θ − 54 e4θ cos 5θ dθ.
⇒ dU = −5 sin 5θ dθ, V = 14 e4θ to get
let U = cos 5θ, dV = e4θ dθ
RNext
R
e4θ cos 5θ dθ = 14 e4θ cos 5θ + 54 e4θ sin 5θ dθ.
Substituting in the previous formula
R 4θgives
1 4θ
5 4θ
25
I = 4 e sin 5θ − 16 e cos 5θ − 16 e sin 5θ dθ
5 4θ
= 14 e4θ sin 5θ − 16
e cos 5θ − 25
I ⇒
16
1 4θ
41
5 4θ
sin
cos
I
=
e
5θ
−
e
5θ
+
C1 .
16
4
16
1 4θ
Hence, I= 41 e (4 sin 5θ − 5 cos 5θ) + C, where C = 16
C.
41 1