Transformateurs de mesure

Download Report

Transcript Transformateurs de mesure

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Transformateurs de mesure

Transformateurs spéciaux. Évolution

par

Jean-Pierre DUPRAZ

Ingénieur de l’École Nationale Supérieure d’Électronique et de ses Applications (ENSEA) et de l’Institut d’Administration des Entreprises (IAE) Responsable du Groupe de Recherches en Électronique de la Direction Technique Haute Tension GEC ALSTHOM Division Transport et Distribution d’Énergie

1.

1.1

1.2

Mesures en courant continu

.................................................................

Mesure du courant ......................................................................................

Mesure de la tension ...................................................................................

2.

2.1

2.2

3.

3.1

3.2

4.

4.1

4.2

5.

5.1

5.2

6.

6.1

6.2

Transformateurs électroniques

............................................................

Transformateurs de courant .......................................................................

Transformateurs de tension........................................................................ 2.2.1 Principes généraux ............................................................................. 2.2.2 Préamplificateurs alimentés en courant ...........................................

2.2.3 Préamplificateurs alimentés en tension ........................................... 2.2.4 Localisation des sous-ensembles...................................................... 2.2.5 Amplificateur de puissance ...............................................................

2.2.6 Problème dû aux charges piégées .................................................... 2.2.7 Fiabilité ................................................................................................

Transformateur amagnétique de courant. Tore de Rogowski

.....

Utilisation pour la mesure de courant à haute fréquence........................ Utilisation aux fréquences industrielles ....................................................

Comparateurs de courant

...................................................................... Principe......................................................................................................... Montages...................................................................................................... 4.2.1 Montage à deux transformateurs......................................................

4.2.2 Association d’un transformateur et d’un amplificateur .................. 4.2.3 Montage à deux transformateurs et un amplificateur.....................

Transformateurs magnéto-optiques de courant. Effet Faraday

..

Principe......................................................................................................... Réalisations actuelles .................................................................................. 5.2.1 Montages classiques ..........................................................................

5.2.2 Montages tenant compte de la non-réciprocité de l’effet Faraday.

Transformateurs électro-optiques de tension. Effet Pockels

...... Principe......................................................................................................... Détections..................................................................................................... 6.2.1 Détection polarimétrique ...................................................................

6.2.2 Détection interférométrique ..............................................................

Pour en savoir plus

.................................................................................... 11 11 11 11 12 13 13 13 13 14 6 7 7 4 4 5 5 5 6 6 9 9 9 9 10 10 7 8 8 D 4 724 - 2 — 2 — 3 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Doc. D 4 726 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 1

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________

L

— ’article

Transformateurs de mesure

fait l’objet de plusieurs articles :

Généralités. Théorie. Fonctionnement

[D 4 720] ; — —

Technologie. Dimensionnement. Essais

[D 4 722] ;

Transformateurs spéciaux. Évolution

[D 4 724] ; et les sujets traités ne sont pas indépendants les uns des autres. Le lecteur devra assez souvent se reporter aux autres articles.

1. Mesures en courant continu 1.1 Mesure du courant

En

alternatif

, un transformateur de courant conventionnel assure trois fonctions de base (article

Transformateurs de mesure.

Généralités. Théorie. Fonctionnement

[D 4 720]) : — isolement ; — comparaison des ampères-tours ; — transfert d’énergie du primaire vers le secondaire.

En

courant continu

, il ne peut plus assurer la dernière fonction.

En effet, le flux d’induction magnétique au sein du noyau est alors constant. Il n’engendre donc pas de force électromotrice dans l’enroulement secondaire. Le courant secondaire doit être délivré par une source auxiliaire, capable de fournir la puissance dissipée par la charge et par la résistance de l’enroulement.

On est alors conduit au schéma représenté sur la figure

1

. Le trans formateur est utilisé pour mesurer la différence entre les ampères tours primaires et les ampères-tours secondaires, tout en assurant l’isolement. Si cette différence n’est pas nulle, il existe, dans le noyau du transformateur, un champ magnétique résiduel dont la mesure fournit un signal d’erreur utilisable par la chaîne de régulation élec tronique. Si celle-ci est correctement réglée, les ampères-tours primaires et secondaires sont égaux, à une erreur négligeable près.

Pour améliorer la réponse en fréquence, on peut utiliser un enrou lement auxiliaire qui permet à l’amplificateur de compenser les varia tions rapides de flux sans être pénalisé par les retards de la chaîne

de mesure du champ d’induction magnétique (figure

2

).

Les appareils mesurant le courant selon ce principe sont appelés

transformateurs à flux nul

, et leur circuit magnétique, n’ayant plus à transférer d’énergie, est de très petite section. Ils diffèrent les uns des autres essentiellement par : — le niveau d’isolement ; — la technique de mesure du champ d’induction résiduel.

En

basse tension

celle de la sonde.

(figures

1

et

2

), la technique la plus courante

consiste à insérer une sonde à effet Hall dans l’entrefer du circuit magnétique. Grâce à la structure de la boucle de régulation, la pré cision globale de l’appareil est indépendante, au premier ordre, de

Figure 1 – Transformateur de courant pour mesure en courant continu : schéma de principe général des transformateurs à flux nul

En

haute tension

, cette technique n’est pas utilisable, car l’éloigne ment relatif de la chaîne de mesure et du transformateur est trop important (il peut dépasser 100 m). Il est en effet illusoire de transmettre sur une aussi grande distance les faibles signaux déli vrés par la sonde à effet Hall. On préfère alors utiliser la technique illustrée sur la figure

3

.

L’idée de base consiste à mettre à profit la non-linéarité des maté riaux ferromagnétiques. Pour cela, il est nécessaire d’utiliser deux transformateurs auxiliaires (T2 et T3) dont les circuits magnétiques, les enroulements primaires (P2, P3) et les enroulements secondaires (S2, S3) sont respectivement identiques à ceux (P1, S1) du trans formateur principal T1 ; ils disposent en outre tous les deux d’un enroulement d’analyse (A2, A3), en série avec un shunt résistif (Sh, R), et alimentés,

en opposition de phase

relativement l’un à l’autre, par une tension sinusoïdale de fréquence

f

0 .

D 4 724

− 2 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE Figure 2 – Transformateur de courant pour mesure en courant continu. Variante de transformateur à flux nul, utilisé en basse tension

En l’absence d’ampères-tours de référence à la fréquence

f

0

continus

, l’

exploration

de la courbe de magnétisme est symétrique, et le courant mesuré aux bornes du shunt d’analyse ne contient que des harmoniques impairs du signal . En présence d’ampères-tours, par contre, l’exploration de la courbe de magnétisme devient dissy métrique : le courant mesuré aux bornes du shunt d’analyse contient alors des harmoniques pairs du signal de référence. Un amplificateur à détection synchrone permet, en particulier, la mesure de l’harmo nique deux, dont l’amplitude et la phase sont représentatives du champ magnétique continu au sein du noyau.

L’emploi de deux transformateurs auxiliaires, analysés en opposi tion de phase, permet d’éliminer toute injection du signal de modu lation dans les circuits primaires et secondaires.

1.2 Mesure de la tension

La technique classique consiste à utiliser un diviseur résistif capacitif (figure

4

) compensé en fréquence, les résistances assurant la mesure et la répartition de la tension en continu, les condensateurs assurant la même fonction en haute fréquence.

Figure 3 – Transformateur de courant à flux nul pour mesure en haute tension

Le pied du diviseur est connecté à un amplificateur électronique d’une impédance telle que la condition :

R

1

C

1 =

R

2

C

2 soit respectée ; cet amplificateur assure l’adaptation d’impédance entre le diviseur et la charge.

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 3

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________ Figure 4 – Transformateur de tension pour mesure en courant continu : schéma de principe

2. Transformateurs électroniques 2.1 Transformateurs de courant

Les transformateurs électroniques de courant ont un intérêt en haute tension (HT), où ils allient les qualités de mesure des trans formateurs magnétiques aux propriétés d’isolement des fibres optiques. Une configuration typique est représentée sur la figure

5

.

On distingue un équipement de mesure, au potentiel de la ligne, une liaison à fibre optique, assurant l’isolement, et un équipement de réception, au potentiel de la terre.

Le courant primaire forme analogique.

I

p est mesuré au moyen d’un transformateur de courant, n’ayant pas à assurer de fonction d’isolement, et dont le secondaire débite sur un shunt de mesure. La tension ainsi recueillie est alors conditionnée, puis convertie en signal numérique parallèle. Celui-ci est ensuite sérialisé, codé, puis converti en impul sions lumineuses, transmises,

via

une fibre optique, généralement multimode, à l’équipement de réception. Après conversion optique-électrique, le signal est alors décodé. Il peut être exploité directement sous forme numérique ou bien, après conversion, sous L’équipement électronique situé au niveau de la ligne doit être alimenté en énergie. Parmi les diverses solutions possibles, les plus intéressantes sont celles indiquées ci-après.

Alimentation à partir du courant de la ligne

: elle est réalisée au moyen d’un transformateur de courant auxiliaire et d’un ensemble électronique de régulation. Il est ainsi possible de disposer d’une puissance de plusieurs watts, autorisant l’emploi d’équipements relativement performants. Notons que le courant capacitif d’une ligne suffit en général au bon fonctionnement du système.

Figure 5 – Transformateur électronique de courant : schéma de principe

D 4 724

− 4 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE

Alimentation à partir du sol

: elle est réalisée au moyen d’une source puissante de lumière, d’une fibre optique et d’un ensemble de conversion électro-optique. Très séduisante (indépendance de l’alimentation et de la ligne HT, facilité de se protéger contre les perturbations, etc.), cette solution ne permet cependant de disposer que d’une puissance modeste, de l’ordre du milliwatt, ce qui limite aujourd’hui les performances envisageables.

Alimentation

au potentiel de ligne

par l’intermédiaire de batteries d’accumulateurs

. Cette solution, qui présente l’inconvénient de nécessiter le remplacement périodique des batteries, a l’avantage de la simplicité et de la fiabilité. Elle est déjà utilisée par certains exploitants européens.

■ De nombreuses autres variantes d’alimentation ont été pro posées, à l’état de prototype, mais elles sont en général beaucoup plus complexes que les trois techniques que nous venons de pré senter et n’ont donc que peu d’avenir.

2.2 Transformateurs de tension

Le domaine d’application privilégié des transformateurs électro niques de tension est l’appareillage à haute tension sous enveloppe métallique, dit

appareillage blindé

. La simplicité relative de leur partie HT les rend compétitifs vis-à-vis des transformateurs magné tiques, lorsque l’utilisateur ne demande pas une puissance de sortie importante (inférieure à 50 VA). Ils trouvent aussi des applications en matériel conventionnel, en association avec des diviseurs capa citifs, en vue d’obtenir des réponses en régime transitoire meilleures que celles des transformateurs capacitifs de tension.

Les principes étant sensiblement les mêmes, nous ne décrirons que l’application aux postes sous enveloppe métallique.

2.2.1 Principes généraux

Les transformateurs électroniques de tension sont constitués de trois sous-ensembles principaux : un condensateur à haute tension, un préamplificateur adaptateur d’impédance et un amplificateur de sortie, délivrant à la charge secondaire la puissance nécessaire.

L’utilisation du condensateur à haute tension peut se faire de deux façons, conduisant à distinguer les préamplificateurs alimentés en courant et les préamplificateurs alimentés en tension.

2.2.2 Préamplificateurs alimentés en courant

Ils sont basés sur le schéma simplifié de la figure un gain différentiel infinis, la relation entre

U

p et

U

6

s . Si nous sup posons que le préamplificateur présente une impédance d’entrée et se résume à :

U

s

U

p = –

C C

1 2 Le courant traversant le condensateur à haute tension nir le point milieu de

C

1 et

C

2 au potentiel 0.

C

1 est entièrement compensé par le préamplificateur de façon à mainte Dans le

montage réel

, il est nécessaire d’ajouter un certain nombre de composants auxiliaires, comme indiqué sur la figure

7

: — le condensateur

C

3 , associé à la résistance écouler à la terre les courants à haute fréquence et de forte amplitude engendrés par les manœuvres de sectionneurs ; il est pour partie formé de la capacité répartie du câble de liaison C

r

, est destiné à ; — la résistance

R

2 permet de fixer le potentiel

de repos

(potentiel en continu, en l’absence de signal d’excitation) de l’amplificateur.

Figure 6 – Préamplificateur alimenté en courant : principe Figure 7 – Préamplificateur alimenté en courant : disposition pratique

La relation entre

U

p et

U

s devient alors :

U

s

U

p = –

C C

1 2 [ 1 + j 1 +

C

3 ) ω 1 ] [ 1 + ( 1/j

R

2

C

2 ω ) ]

Exemple :

soit un montage avec :

C

1 = 5 pF

r

= 100 Ω

C

2 = 100 nF

R

2 = 100 M Ω avec

f

Il vient : = 50 Hz fréquence du réseau.

r C

1 +

C

3 ) ω

R

2

C

2 ω ≈ ≈ – 4 1 ⋅ – 4

C

3 = 10 nF et

U

s

U

p ≈ –

C C

1 2 L’intérêt de ce montage est évident : la capacité parasite du câble de liaison n’a pas d’influence significative sur la précision de mesure, et le préamplificateur n’est pas soumis aux courants à haute fréquence générés par la cellule blindée lors des manœuvres de sectionneurs.

Les montages employés utilisent dans la pratique des filtrages bien plus performants que celui réalisé à l’aide des composants

r

et

C

3 , mais les conclusions sont les mêmes.

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 5

Dossier délivré pour Madame, Monsieur 17/09/2008

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________

2.2.3 Préamplificateurs alimentés en tension

Ils sont basés sur le schéma simplifié de la figure

8

. Avec les mêmes hypothèses qu’au paragraphe

2.2.2

, la relation entre

U

p et se ramène à :

U

s

U U

s p =

C

1

C

1 +

C

2 ≈

C

1

C

2 Dans le cas où le préamplificateur est situé à une distance importante (50 à 100 m) du condensateur

C

1 , il est nécessaire de tenir compte de la capacité du câble de liaison

C

, comme indiquée sur la figure

9

. La résistance

R

2 permet de fixer le potentiel de repos de l’amplificateur.

La relation devient alors :

U

s

U

p =

C

1

C

1 +

C

2 +

C

3 1 + j

R

2 (

C

1 +

C

2 +

C

3 ) ω

Exemple :

soit un montage avec :

C

1 = 5 pF

C

2 = 100 nF

R

2 = 100 M Ω avec

f

= 50 Hz fréquence de réseau.

Il vient alors :

R

2 (

C

1 +

C

2 +

C

3 ) ω ≈ –

C

3 = 10 nF 4 1 et

U

s

U

p ≈

C

1

C

2 +

C

3 =

C C

1 2 [ 1

C

1 3 /

C

2 ) ] avec

C

3 /

C

2 = 0,1 pour cet exemple.

La capacité du câble n’est donc pas négligeable. Il est alors néces saire d’étalonner le préamplificateur équipé de son câble complet, ce qui est une contrainte de mise en œuvre relativement gênante.

2.2.4 Localisation des sous-ensembles

Le préamplificateur peut être installé soit au niveau de la cellule blindée, soit dans le bâtiment de relayage.

Au niveau de la cellule blindée

l’intérêt que dans le cas d’un préamplificateur alimenté en tension, dans la mesure où la capacité de liaison du câble n’intervient plus sur

l’entrée (§ 2.2.3)

: cette solution ne présente de

. Elle impose un câble auxiliaire pour fournir

l’alimentation en énergie du préamplificateur. De plus, le pré amplificateur se trouve alors exposé aux perturbations électro magnétiques sur toutes ses bornes (entrée, sortie, alimentation).

C’est pourquoi cette solution, utilisée dans certains prototypes, ne l’est plus aujourd’hui.

Dans le bâtiment de relayage

atténuation.

: c’est la solution la plus économique et la plus fiable [elle se présente ainsi sur les figures

7

et

9

]. Il n’est

plus nécessaire de délivrer une tension d’alimentation au pied de la cellule blindée et l’étage d’entrée du préamplificateur est relative ment facile à protéger contre les perturbations électromagnétiques de mode différentiel, le câble de liaison contribuant lui-même à leur Soulignons cependant que les perturbations de mode commun apportées par le câble peuvent être importantes et doivent être prises en compte. Les normes concernant la compatibilité électro magnétique (CEI 801) aident à la conception de matériels robustes, les phénomènes étant aujourd’hui bien maîtrisés.

Figure 8 – Préamplificateur alimenté en tension : principe Figure 9 – Préamplificateur alimenté en tension : disposition pratique

2.2.5 Amplificateur de puissance

Il convient ici de souligner une différence majeure entre un transformateur de tension de type conventionnel et un transforma teur électronique : — le premier est capable de délivrer à sa charge une puissance très importante (par exemple 200 W nominaux), indépendamment des tensions auxiliaires d’alimentation du poste, l’énergie étant prélevée sur le réseau ; — le second, au contraire, doit, pour fonctionner, être alimenté en énergie par les tensions auxiliaires du poste ; celles-ci, dans le cas d’alimentation de relais de protection, sont généralement secourues par batterie.

De plus, les amplificateurs de puissance généralement utilisés fonctionnent en classe B, ce qui les conduit à travailler avec de très mauvais rendements.

Nota :

le lecteur pourra trouver plus de détails sur les l’article

Émetteurs radioélectriques. Caractéristiques et conception

[TE 6 207] du traité Télécoms.

On peut démontrer que le rendement η d’un amplificateur idéal fonctionnant en classe B est donné par la formule : η = ----- 1

k U U

s sn avec α = tension d tension d ′ alimentation minimale -------------------------------------------------------------------------------------------- alimentation assignée ,

k

facteur de tension,

U

sn tension de sortie assignée.

D 4 724

− 6 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE Exemple :

pour un amplificateur de classe B

idéal

(pas de tension

de déchet

sur les transistors de sortie), avec un facteur de tension

k

= 1,9 ; α = 0,8 et pour la tension assignée ( l’ordre de 33 %.

U

s =

U

sn ), le rendement est de Cela signifie que pour fournir une puissance minimale de 200 W à sa charge secondaire, l’amplificateur devra dissiper 405 W dans ses transistors et demander 605 W à la source auxiliaire d’alimentation. Et cela, pour chaque phase du réseau HT.

Du fait de ces mauvaises conditions de fonctionnement, la puis sance des transformateurs électroniques de tension est générale ment limitée à quelques dizaines de watts (par exemple, de 10 à 40 W pour un facteur de tension de 1,9). Leur emploi est par là même réservé à l’alimentation de protections et de compteurs électro niques, se contentant d’une faible énergie.

Notons que l’utilisation d’amplificateurs fonctionnant en classe D, encore peu ou pas répandus, serait une amélioration notable, ceux-ci ayant des rendements de l’ordre de 90 %, indépendamment du niveau de sortie.

2.2.6 Problème dû aux charges piégées

C’est l’un des problèmes majeurs des transformateurs capacitifs électroniques de tension (TCT). Lors d’une manœuvre d’ouverture d’un disjoncteur, des charges électriques peuvent rester piégées sur la ligne (ou le câble), qui se comporte, à vide, comme un condensateur de forte valeur (

C

L , figure

10

a

). Il en résulte une ten sion continue

U

p de valeur élevée, l’ouverture du disjoncteur pou vant avoir lieu par exemple sur une crête (figure

10

b

). Cette tension décroît exponentiellement dans le temps, avec une constante de temps de l’ordre de un ou plusieurs jours, en raison des diverses résistances de fuites, variables avec les conditions climatiques. Le condensateur basse tension

C

b du TCT électronique est rapidement déchargé par la résistance de polarisation

R

2 , tandis que le condensateur

C

a reste chargé à la tension de ligne

U

charge : p , stockant la

q

1 =

C

a

U

p Lors de la remise sous tension [réenclenchement, figure faible impédance du réseau, en courant continu, décharge quasi ins tantanément la ligne (ou le câble), effectuant alors un transfert des charges de

C

a vers

C

b

10

b

], la , qui se trouve alors chargé à la tension

U

2 donnée par :

U

2 = – ----------------------

C

a

q

+ 1

C

b = –

U C

a

C

+ a

C

b ≈ –

U C C

a b Cette tension, qui décroît exponentiellement avec une constante de temps

R

2

C

b , se superpose au signal sinusoïdal utile, et constitue une erreur très importante. Mais surtout, cette composante apério dique, si aucune précaution n’est prise, sature les transformateurs d’entrée des protections, rendant celles-ci inopérantes.

Diverses solutions ont été imaginées, faisant appel, par exemple, à des filtres commutables (

Filtres à capacités commutées

[E 3 150] dans le traité Électronique), mais avec des résultats plus ou moins heureux, une difficulté supplémentaire venant de ce que les configurations résolvant le problème des charges piégées sont défavorables à l’obtention d’une bonne précision en régime établi, et réciproquement.

2.2.7 Fiabilité

Les amplificateurs sont généralement doublés, et équipés d’un dispositif d’autosurveillance, permettant, d’une part, d’assurer la continuité du service en cas de défaillance d’une voie et, d’autre part, d’effectuer une réparation rapide grâce aux indicateurs de pannes.

Figure 10 – Ligne et transformateur capacitif électronique de tension en présence de charges piégées

3. Transformateur amagnétique de courant. Tore de Rogowski

Le tore, ou bobine, de Rogowski se présente sous la forme d’un enroulement conducteur, bobiné sur un mandrin de forme torique constitué d’un matériau non ferromagnétique, ce qui lui confère d’excellentes caractéristiques de linéarité, dues à l’absence de saturation.

Lorsque les capacités parasites sont négligeables, on peut utiliser le schéma équivalent de la figure

11

. On distingue deux utilisations

différentes de la bobine de Rogowski.

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 7

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________

3.1 Utilisation pour la mesure de courant à haute fréquence

La bobine de Rogowski est utilisée comme un transformateur de courant conventionnel, c’est-à-dire chargé par une résistance

R

de

très faible valeur (figure

12

).

Le courant traversant la charge est alors donné par :

I

s =

I

p

N

1 + [ (

r

+ 1

R

) / j

L

ω ] avec

N

nombre de spires de la bobine.

Exemple :

avec

N r

= 30 = 0,5 m Ω

L

= 0,5 µ H

R

= 0,1 m Ω la fréquence de coupure basse (coupure à – 3 dB) est

f

B = 190 kHz.

Si la fréquence est suffisamment élevée, la relation se résume à :

I

s =

I

p /

N

De telles bobines sont couramment utilisées en laboratoire pour mesurer des courants de l’ordre de la centaine de kiloampères, à des fréquences supérieures à 1 MHz. La valeur élevée de la fréquence autorise l’emploi d’un petit nombre de spires. Il est alors relativement facile de réaliser des bobinages n’ayant que très peu de capacité parasite, et offrant ainsi des bandes passantes de l’ordre de la centaine de mégahertz.

3.2 Utilisation aux fréquences industrielles

La bobine de Rogowski est chargée par une résistance

R

de valeur

élevée (figure

13

).

La tension recueillie à ses bornes est alors donnée par :

U

s = – j

L

ω

I

p 1 + [

r

+ 1 j

L

ω ) /

R

] C’est une image de la dérivée du courant, sous réserve que la relation :

R

2

r

2 +

L

2 ω 2 soit respectée.

Il suffit alors d’intégrer cette tension pour obtenir l’image du courant primaire. L’intégration peut être réalisée soit numéri quement (application aux mesures en laboratoire), soit électro niquement, comme indiqué sur la figure

14

. La tension de sortie de

l’amplificateur est alors liée au courant primaire par la relation :

U

s = –

I

N

p (

R

+

L r

)

C

1 + [ j

L

ω / (

R

+

r

) ]

Figure 13 – Mesure de la dérivée du courant, à fréquence industrielle, par bobine de Rogowski : schéma équivalent Figure 11 – Tore de Rogowski Figure 12 – Tore de Rogowski : montage pour la mesure du courant à haute fréquence Figure 14 – Mesure du courant, à fréquence industrielle, par bobine de Rogowski et intégrateur : schéma équivalent

D 4 724

− 8 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE

La bobine de Rogowski est très intéressante, car son absence de saturation permet la mesure de courants présentant de très fortes asymétries. Ses petites dimensions et sa faible masse rendent son emploi très commode.

Malgré quelques rares expériences, elle n’est pas utilisée seule comme transformateur de courant, en raison des puissances élevées demandées par les charges secondaires. Elle commence, toutefois, à faire son apparition dans les réseaux à moyenne tension, où, associée à un intégrateur et à un relayage de protection électronique, elle contribue à augmenter la compacité des cellules.

4. Comparateurs de courant 4.1 Principe

Conçus pour obtenir de très grandes précisions, ils sont par exemple utilisés comme étalons lors des essais de précision des transformateurs de courant. Il existe un grand nombre de modes de réalisation possibles de ces appareils, mais tous sont fondés sur le même principe : comparaison des courants primaires et secondaires au moyen d’un transformateur de courant et fourniture de la puis sance nécessaire aux pertes Joule secondaires et à la charge à l’aide d’une source auxiliaire, pouvant être un second transformateur de courant (figure

15

), un amplificateur électronique (figure

16

) ou une

combinaison des deux (figure

17

).

L’erreur d’un transformateur de courant (article

Transformateurs de mesure - Généralités - Théorie - Fonctionnement

[D 4 720]) s’écrit : ε = ε Kn –

Z

s + (

r

2 +

L

2

p

2

p

) 1 +

L R

2

p

La présence de la charge

Z

s et de la résistance série source auxiliaire, cela revient à avoir :

r

2 traduit le fait que le transformateur de mesure doit fournir de l’énergie dans le circuit secondaire. Si cette énergie est obtenue à l’aide d’une

r

2 = 0 et

Z

s = 0 dans la formule ; il vient alors : ε = ε Kn –

L

2 1 +

L

Il est alors évident qu’il suffit de réaliser un bobinage secondaire dont le rapport de l’inductance de fuite 2 à l’inductance magné tisante

L

2 soit le plus faible possible pour obtenir une erreur totale réduite dans les mêmes proportions. Tel est le principe des compara teurs de courant.

4.2 Montages 4.2.1 Montage à deux transformateurs

C’est le montage Hobson représenté sur la figure

15

a

. Le

trans formateur de mesure

de fuite.

est le transformateur de courant

TM

; sa conception est particulièrement soignée pour minimiser l’inductance Le

transformateur auxiliaire TA

comporte trois enroulements : — son enroulement primaire PA est traversé par le courant à mesurer

I

p ; — son secondaire SA1 est connecté en série avec le secondaire SM de TM, de façon à ce que la tension délivrée à la charge soit fournie par TA ; — l’enroulement tertiaire SA2 débite sur une charge réglable

Z

r .

Figure 15 – Comparateur de courant : montage de Hobson Figure 16 – Comparateur de courant : montage à un transformateur et un amplificateur

Cette charge est ajustée de façon à ce que la tension présente aux bornes du secondaire SM de TM soit nulle, si l’on se contente d’un réglage grossier, ou égale à la chute de tension due à la résistance Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 9

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________ Figure 17 – Comparateur de courant : montage à deux transformateurs et un amplificateur

de l’enroulement, si l’on désire une précision extrême ; dans ce dernier cas, une méthode de zéro est utile pour vérifier l’équilibre (figure

15

b

). Pour cela, on insère, en série entre les enroulements SM et SA1, une résistance

r

de valeur égale à la résistance de l’enrou lement secondaire SM de TM, et l’on contrôle l’équilibre des tensions au moyen d’une mesure en pont.

Lorsque l’équilibre est réalisé, le flux d’induction magnétique dans le transformateur de mesure TM est nul (aux flux de fuite près), ainsi que le courant magnétisant. L’erreur de ce transformateur est alors réduite à des valeurs très faibles (erreurs de rapport inférieures à 10 – 4 ).

La mise en œuvre de ce montage est contraignante, car le réglage doit être effectué sur deux paramètres (phase et gain) et pour chaque valeur de la charge.

4.2.2 Association d’un transformateur et d’un amplificateur

La figure

16

présente une solution aux problèmes de réglage du montage précédent.

Le transformateur de mesure TM comporte un enroulement sup plémentaire SM2, permettant la mesure du flux d’induction magné tique, donc de l’erreur. La tension d’erreur délivrée par SM2 est appliquée à l’entrée d’un amplificateur de puissance AP, lequel, au moyen du transformateur de sortie TS, délivre au circuit secondaire une tension proportionnelle à l’erreur.

Le circuit secondaire est formé de la mise en série de la charge

Z

s et des enroulements secondaires SM1 de TM et SS de TS.

L’ensemble constitue un système bouclé. Si le gain de l’ampli ficateur est suffisamment élevé, le système atteint un équilibre pour lequel la tension délivrée par SM2 est très faible. En effet, à l’équi libre, la tension secondaire de TS est très peu différente de la tension aux bornes de la charge. Toute augmentation du gain (dans les limites de la stabilité) se traduit donc par une diminution du flux d’induction magnétique et donc de l’erreur.

Ce montage est tout à fait adapté aux applications de précision à faible puissance (de l’ordre de 0,1 VA nominal). L’énergie utilisée au secondaire étant fournie au moyen de l’amplificateur, le trans formateur de courant peut avoir des dimensions très réduites (flux nul). En revanche, dès qu’il est nécessaire de fournir une puissance élevée au secondaire, il faut recourir à d’autres solutions, la taille et le coût de l’amplificateur devenant prohibitifs.

4.2.3 Montage à deux transformateurs et un amplificateur

Le montage de la figure

17

a

cumule les avantages des deux montages précédents, sans en avoir les inconvénients.

transformateur de courant T M de réalisation soignée (très faible inductance de fuite) et un transformateur auxiliaire T A destiné à fournir l’essentiel de la puissance nécessaire au circuit secondaire.

La mesure de l’erreur résiduelle est faite au moyen de l’enroulement secondaire SM2, qui délivre à l’amplificateur de puissance AP une Comme dans le montage de Hobson (figure correction

I

C l’amplificateur et aux flux de fuite près).

15

a

), on retrouve un formateur TM. L’amplificateur de puissance AP délivre alors dans l’enroulement SA2 du transformateur auxiliaire TA un courant de . Le système étant bouclé, l’équilibre est atteint lorsque la tension délivrée par l’enroulement SM2 est nulle (au gain de Le transformateur de courant TM fonctionne à flux nul, sans délivrer de puissance au secondaire. Il peut être de dimensions réduites et optimisé au niveau des flux de fuite.

Le transformateur auxiliaire TA délivre la quasi-totalité de la puis sance dissipée dans le circuit de la charge, mais n’a pas besoin d’être très précis.

L’amplificateur de puissance AP n’intervient que comme correc teur, sa contribution à la fourniture de la puissance secondaire étant marginale. Il est donc de dimensions et de coût raisonnables.

Le même principe peut être appliqué de multiples façons, donnant lieu à une multitude de schémas que nous ne pouvons pas présenter tous ici.

Citons seulement, pour conclure, le montage de la figure

17

b

dérivé directement du précédent, avec lequel il est possible d’atteindre des erreurs de rapport de l’ordre de 10 de phase de l’ordre de 0,05 minute d’angle, pour des courants variant sur une plage de 1 à 200 %.

–5 et des erreurs

D 4 724

− 10 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE

5. Transformateurs magnéto-optiques de courant. Effet Faraday

Lorsque le milieu d’interaction fait

N

fois le tour d’un conducteur parcouru par un courant

I

, la relation précédente se ramène à : θ =

V N

I

(3) Nota :

le lecteur pourra se reporter, dans le traité Mesures et Contrôle, aux articles

Capteurs à fibres optiques

[R 415] et

Mesures sur fibres optiques

[R 1 177].

5.2 Réalisations actuelles

Elles sont encore au stade expérimental sur les réseaux ou installées pour une évaluation en vraie grandeur dans les postes HT.

Elles diffèrent principalement par le choix du milieu d’interaction.

5.1 Principe

L’effet Faraday est un phénomène magnéto-optique dû à l’appari tion, dans un milieu matériel soumis à l’influence d’un champ

5.2.1 Montages classiques

magnétique

H

, d’une biréfringence circulaire induite

B

c

suivant la loi :

B

c

=

n

g

n

d

= 2 λ π 2 ⋅

u

(1)

avec

n u

g

,

n

d

indices de réfraction associés aux modes propres de propagation à polarisation circulaire respectivement gauche et droite, vecteur unitaire dirigé parallèlement à la direction de propagation de l’onde lumineuse, et orienté dans le même sens,

V

λ constante de Verdet, longueur d’onde de la lumière dans le vide.

La constante de Verdet dépend du matériau et de la longueur d’onde selon la loi approchée : Le milieu d’interaction peut être soit un prisme de matériau sensible (Flint, BG0), connecté à des fibres multimodes, soit une fibre optique monomode enroulée autour de la ligne. Dans les deux cas, le

principe de mesure

reste généralement le même, à quelques variantes près.

Le premier cas est illustré par la figure

18

.

Le deuxième est représenté sur la figure

Mesures et Contrôle,

19

: une onde à pola-

risation linéaire est injectée dans la fibre optique monomode consti tuant le capteur. À sa sortie, un prisme de Wollaston (dans le traité

Visualisations et mesures en aérodynamique

[R 2 160]), convenablement orienté, sépare les composantes à pola risations orthogonales de l’onde émergente et les aiguille vers deux détecteurs D1 et D2.

Si i 0 est l’intensité lumineuse injectée dans la fibre par le laser L, les intensités i 1 et i 2 détectées sur D1 et D2 sont respectivement données (en négligeant les atténuations) par : avec κ λ mat

V

= κ λ 2 [ 1 – ( λ 1 mat / λ ) 2 ] 2 constante de proportionnalité, dépendant du matériau (en particulier, de sa masse volumique), constante physique du matériau, liée aux modes de résonance cyclotron et homogène à une longueur d’onde.

i 1 = i 2 0 cos [ θ + ( π /4 ) ] i 2 = i ------- 2 sin 2 θ + ( π /4 ) ] Le déphasage π /4 est dû à l’orientation relative du prisme ana lyseur et du polariseur d’entrée ; θ est la rotation due à l’effet Faraday.

Exemple

Pour la

silice

: λ mat ≈ 80 nm κ ≈ 1,76 · 10 – 18 m 2 /A d’où

V

= 2,8 · 10 – 6 pour une lumière de longueur d’onde de 800 nm.

L’effet Faraday se manifeste par la rotation θ du plan de polarisa tion d’une onde à polarisation linéaire, à la traversée d’un matériau de longueur , soumis à l’influence du champ

de la relation (1)

, on a :

H

; en tenant compte θ = 2 --------- 1 ----- 2

B

=

V H

u

d

(2)

De même, deux ondes à polarisation circulaire identique se propageant en sens inverse, ou à polarisation circulaire inverse se propageant dans le même sens, subissent un déphasage égal à 2 θ .

Il est à noter que l’effet Faraday est un effet non réciproque : l’angle θ est doublé lorsque l’onde effectue un aller-retour au sein du milieu, propriété qui est mise à profit pour augmenter la sensibilité des capteurs.

La similitude de forme de la loi donnant la valeur de l’angle du théorème d’Ampère fait de l’effet Faraday un moyen tout indiqué pour mesurer des courants électriques. Les propriétés isolantes des fibres optiques permettent d’effectuer cette mesure sur des lignes à haute tension en s’affranchissant des difficultés d’isolement inhérentes aux transformateurs de courant conventionnels.

θ et

Figure 18 – Mesure du courant par effet Faraday.

Technologie en optique de volume

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 11

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________ Figure 19 – Mesure du courant par effet Faraday.

Capteur à fibre optique monomode : détection en simple traversée

Un traitement élémentaire permet de calculer le courant

I

p :

I

p = 1 2

VN

avec = i 1 – i 2 i 1 + i 2 = sin 2 θ

et en tenant compte de (3)

: = sin 2

V N

I

Ce principe, relativement simple, est cependant d’une

mise en œuvre

difficile. En effet, que le capteur soit une fibre optique (figure

19

) ou un prisme (figure

18

), ses biréfringences intrinsèques,

généralement dépendantes de la température, introduisent des rotations de polarisation parasites perturbant totalement la mesure.

Un

capteur à prisme

(figure tation du polariseur d’entrée.

18

) doit, de plus, être d’une réalisation très soignée pour minimiser les biréfringences dues aux contraintes internes ; leur effet peut être réduit par un choix adéquat de l’orien Le

capteur à fibre monomode

spéciales, à très faible biréfringence linéaire intrinsèque. Pour neutraliser totalement les biréfringences résiduelles, dues par exemple à la courbure de la fibre autour de la ligne, une technique consiste à torsader la fibre de façon à engendrer une biréfringence circulaire, par photoélasticité, très supérieure aux biréfringences linéaires résiduelles. Cependant, l’effet obtenu dépend de la tempé rature. Le montage de la figure est soumise à deux torsades de pas opposés : les performances en température restent médiocres et en interdisent l’emploi pour le transformateur classe

mesure

.

19

(figure

19

) utilise des fibres

n’est donc utilisable que si la fibre

5.2.2 Montages tenant compte de la non-réciprocité de l’effet Faraday

Pour obtenir une meilleure stabilité, la solution consiste à mettre à profit la non-réciprocité de l’effet Faraday. Deux techniques sont possibles.

■ Sur le montage de la figure

20

a

, un miroir placé en extrémité de la fibre optique renvoie l’onde une deuxième fois dans le capteur, mais en sens inverse. L’effet Faraday étant non réciproque, la rotation du plan de polarisation se trouve doublée par rapport à une simple traversée du capteur, alors que, du fait de leur caractère réciproque, les effets des biréfringences internes sont compensés.

Cette configuration

polarimétrique

montage.

confère au capteur une très grande stabilité en température. Les meilleures performances publiées aujourd’hui (classe 0,2) ont été obtenues à l’aide de ce ■ La figure

20

b

présente une configuration

interférométrique

. Dans ce montage, le capteur est parcouru par deux ondes à polarisation circulaire identique, se propageant en sens inverse, et interférant, après recombinaison sur la lame séparatrice LS. L’intensité lumi neuse mesurée au niveau du photodétecteur D est alors de la forme : i 1 = i 2 0 1 cos 2 θ ) avec θ donné par la relation

(3) .

L’emploi d’un modulateur de phase dans la boucle de l’inter féromètre permet de transformer la loi de détection

cosinusoïdale

en une loi du type : i 1 =

k

sin 2 θ améliorant la sensibilité pour de petits angles (quelques degrés).

Si les deux ondes contra-propagatives ont le même état de pola risation, du fait qu’elles effectuent le même chemin optique, au sens près, elles ne sont sensibles qu’à l’effet Faraday.

la nécessité d’un modulateur de phase.

Il est cependant d’une mise en œuvre plus complexe, en raison de ■

Remarque :

comme ces deux montages exploitent le caractère non réciproque de l’effet Faraday, on pourrait penser qu’il n’est plus nécessaire de torsader les fibres, puisque les effets de biréfringences parasites sont neutralisés. En réalité, cela n’est rigoureux que pour de petits déphasages même, pour de petits courants (de l’ordre de la centaine d’ampères). En effet, la biréfringence circulaire, induite par effet Faraday, détruit la symétrie des parcours aller-retour de l’onde.

Pour rétablir cette symétrie, il est nécessaire de disposer d’une très forte biréfringence circulaire interne, ce qui est obtenu à l’aide de la torsade de la fibre.

θ ou, ce qui revient au ■ En 1990, les transformateurs de courant à effet Faraday quittent le laboratoire pour l’expérimentation en vraie grandeur, sur les réseaux. La généralisation de leur emploi sera bien entendu condi tionnée par l’évolution des techniques de protection et de comptage qui, dans un avenir proche, ne nécessiteront plus les puissances de précision considérables inaccessibles aux transformateurs de courant non conventionnels.

D 4 724

− 12 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE Figure 20 – Montages magnéto-optiques mettant à profit la non-réciprocité de l’effet Faraday

6. Transformateurs électro-optiques de tension. Effet Pockels 6.1 Principe

La propagation de la lumière dans un cristal anisotrope peut être décrite au moyen de son ellipsoïde des indices, qui, rapporté à ses axes propres, est solution de l’équation : ∑

i

X

2 -----------------

n

i

2 = 1 avec

i n

= 1,2,3, indice de réfraction,

X

variable dimensionnelle.

Les axes propres définissent les directions de propagation et les états de polarisation des ondes qui peuvent traverser le cristal sans déformation (modes propres).

L’application de champs électriques externes modifie la distribu tion des charges et même les positions relatives des ions dans le réseau cristallin, ce qui se traduit par une déformation de l’ellipsoïde des indices. L’effet Pockels décrit la part de cette modification due à une interaction linéaire du champ électrique

E

appliqué et du milieu, l’interaction quadratique étant décrite par l’effet Kerr. Lorsque ce dernier est négligeable, l’équation de l’ellipsoïde des indices devient : ∑

i

,

j

,

k

X

2 ----------------

n

i

2 +

R

i

,

j

,

k

X

i

X

j

E

k

= 1

i

,

j

,

k

= 1,2,3

R

i

,

j

,

k

est le tenseur électro-optique linéaire du cristal.

Par un choix convenable du matériau, de la coupe cristallo graphique, de la direction de propagation de la lumière et de la direc tion du champ électrique

E

appliqué, l’effet Pockels se ramène à l’apparition d’une biréfringence linéaire

B

L exprimée par :

B

L =

n

3

r E

avec

n r

indice de réfraction, coefficient du tenseur électro-optique linéaire.

Cette biréfringence peut être mesurée de plusieurs façons (§ 6.2)

.

6.2 Détections 6.2.1 Détection polarimétrique

Le

montage de base

est décrit sur la figure

21

. Le cristal est analysé

au moyen d’une onde à polarisation circulaire, obtenue à partir d’un laser, d’un polariseur et d’une lame quart d’onde. Le champ élec trique est appliqué dans la même direction que la propagation de l’onde, grâce à des électrodes transparentes déposées en extrémité Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 13

Dossier délivré pour Madame, Monsieur 17/09/2008

TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________

de cristal. Dans ces conditions, les modes propres subissent, à la traversée du cristal, un déphasage relatif donné par : ϕ = 2 --------- 0

B

= 2 λ π

n

0

E

d = 2 λ π

n

avec longueur d’interaction,

U

λ tension appliquée, longueur d’onde du laser.

Un prisme de Wollaston, dont les axes propres sont orientés à 45 o par rapport à ceux du milieu d’interaction permet d’analyser les composantes à polarisation orthogonale de l’onde émergente, en les aiguillant respectivement sur les détecteurs D1 et D2.

Les puissances optiques détectées sont alors respectivement : 1 = 1 ----- 2 ( sin ϕ ) 2 = 1 2 ( 1 + sin ϕ ) avec puissance injectée (en sortie de polariseur).

0 Un traitement de signal élémentaire permet alors de calculer

U

connaissant 1 et 2 par la relation :

U

= 2 λ π

n

1 3

r

2 – + 1 La figure ce principe. Du fait de l’absence de conducteur électrique, la platine optique peut être placée soit au niveau du sol, soit au niveau de la ligne à haute tension, en vue, par exemple, de réaliser un combiné de mesure en association avec un transformateur de courant à effet Faraday.

22

représente un

transformateur de tension réalisé

selon En fait, il est nécessaire de corriger les effets de la température, qui se manifestent principalement par une variation de la longueur d’onde du laser, du coefficient électro-optique

r

, et de l’indice de réfraction du cristal.

Les meilleurs résultats publiés en 1991, sur un prototype industriel, font état d’une précision de mesure compatible avec la classe 0,2 de la CEI. Le capteur utilisé est un cristal de BGO, ayant une symétrie cubique.

6.2.2 Détection interférométrique

L’un des montages possibles est décrit sur la figure

en technologie

optique intégrée

peut être utilisé pour la mesure de tension.

23

. Le composant de base est un interféromètre de Mach Zendher réalisé . Ce type de composant, développé pour des applications de commutation rapide en télécommunication,

Figure 21 – Mesure de tension par effet Pockels : principe de la méthode polarimétrique

D 4 724

− 14 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008 Dossier délivré pour Madame, Monsieur 17/09/2008

________________________________________________________________________________________________________ TRANSFORMATEURS DE MESURE Figure 22 – Transformateur de tension à effet Pockels : exemple de réalisation

Le matériau généralement utilisé est le niobate de lithium, qui, transparent à 0,8 µ m, se prête bien à la réalisation par dopage (diffusion d’ions titane) de guides diélectriques minces, et possède un effet électro-optique important.

L’onde incidente, couplée au circuit au moyen d’une fibre optique à conservation de polarisation, est polarisée linéairement. Elle se sépare en parts égales dans les deux bras de l’interféromètre, réa lisés de façon à ce que le déphasage au point de jonction soit égal à π /2, en l’absence de tension de commande ; l’onde résultante est couplée à une fibre optique multimode, qui assure la liaison avec le photodétecteur.

Des électrodes, déposées en surface du guide, permettent par application d’une tension

U

, de créer, dans les deux bras de l’inter féromètre des champs électriques transverses en opposition de phase, ce qui induit, par effet Pockels, des variations d’indice de

Figure 23 – Interféromètre de Mach Zendher : structure à électrode centrale

réfraction

n

opposées dans les deux bras, la différence ∆

n

étant donnée par : avec

k

= ∆

n

=

n

3

r E

=

k n

3

r U E

------

U

facteur de forme.

La puissance détectée en sortie est alors de la forme : = 1 2 0 – sin π

U U

π d’où

U

=

U

-------- arcsin 1 – avec et 0 longueur des bras de l’interféromètre soumise à l’effet Pockels ;

U

π = ------------------------- 2

n

3

r k

Dans la

pratique

, le coût de cette technologie et la difficulté à obtenir une dissymétrie des bras de l’interféromètre conduisant rigoureusement à un déphasage statique de π / 2 fait que cette solution n’a pas véritablement quitté le stade des laboratoires, mais son originalité et les tendances de développement de l’opto électronique font que nous devions la mentionner.

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

D 4 724

− 15

Dossier délivré pour Madame, Monsieur 17/09/2008

Transformateurs de mesure

E N

par

Jean-Pierre DUPRAZ

Ingénieur de l’École Nationale Supérieure d’Électronique et de ses Applications (ENSEA) et de l’Institut d’Administration des Entreprises (IAE) Responsable du Groupe de Recherches en Électronique de la Direction Technique Haute Tension GEC ALSTHOM Division Transport et Distribution d’Énergie

Transformateurs de mesure conventionnels

BRESSON (C.). –

Transformateurs de mesure et relais de protection.

Éd. Dunod (1932).

GOLDSTEIN. –

Die Messwandler.

Verlag Birkäuser.

Basel (CH) (1952).

GROWER (F.W.). – Inductance calculation. Dover Publications Inc. New York (USA).

Collectif. –

Transformateurs de mesure (1 re partie).

RGE (F)

75

, n o 6, juin 1966.

Collectif. –

Transformateurs de mesure (2 e partie).

RGE (F), sept. 1966.

Collectif. –

Transformateurs de mesure (3 e partie).

RGE (F), déc. 1966.

Collectif. –

Les réducteurs de mesure utilisés en France pour les réseaux à haute tension.

RGE (F)

88

, n o 10, oct. 1979.

Collectif. –

Transformateurs de mesure en haute tension.

RGE (F) n o 4, avril 1990.

Collectif. –

Technologie et comportement en service des réducteurs de mesure.

Electra (F) n o 119 (1988) ; Electra (F) n o 124 - 125 - 126 (1989).

Transformateurs de courant

HODGKISS (J.W.). –

Comportement des trans formateurs de courant soumis à des courants asymétriques transitoires.

CIGRE 18 e session, Rapport n o 329 (1960).

MARSHALL (D.E.) et LANGGUTH (P.O.). –

Current transformer excitation under transient condi tions.

AIEE Trans. (CND)

48

, p. 1464 (1929).

MARSHALL (D.E.) et LANGGUTH (P.O.). –

Remanent flux in current transformers.

Ontario Hydro Research Quartely (CND), p. 18 (1970).

ROMIER (R.). –

Réponse d’un transformateur de courant en régime transitoire.

RGE (F), n o 6, juin 1966.

SOHIER (J.), GAILLET (B.) et SAINT-LÉGER (H. de).

Comportement des transformateurs de courant en régime asymétrique de court-circuit.

RGE (F)

75

, n o 6, juin 1966.

Transformateurs de tension

AUMONT (P.). –

Conception des transformateurs de tension destinés à l’équipement du réseau à haute tension français.

RGE (F)

88

, n o 10, oct. 1979.

DROUAULT (A.). –

Réponse d’un transformateur de tension à une brusque chute de tension primaire.

RGE (F), déc. 1966.

Bibliographie

GOUGEUIL (J. C.). –

Comportement des réducteurs de tension en régime transitoire.

RGE (F),

75

, n o 6, juin 1966.

LE MAGUET (D.). –

Conception des transformateurs de tension destinés à l’équipement du réseau à haute tension français.

RGE (F),

88

, n o 10, oct. 1979.

MAHY (P.). –

Contribution théorique et expéri mentale à l’étude des phénomènes de ferro résonance monophasée.

Bulletin de la SRBE (B),

88

, n o 3 (1972).

TRAIN (D.) et VOHL (P.E.). –

Determination of ratio characteristics of cascade connected trans formers.

IEEE Transaction on Power Apparatus a n d S y s t e m s , v o l PA S 9 5 ( U S A ) , n o 6 , nov-déc. 1976.

Transformateurs capacitifs de tension

LEFEBVRE (M.). –

Étude de la réponse d’un réducteur de tension capacitif pendant un court-circuit aux bornes du circuit primaire.

RGE (F), déc. 1966.

LEBORNE et LACHAUD (J.). –

Conception des trans formateurs capacitifs de tension destinés à l’équipement du réseau à haute tension français.

RGE (F),

88

, n o 10, oct. 1979.

SALLE (P.). –

distance.

Influence des régimes transitoires des TCT sur le fonctionnement des protections de

RGE (F), n o 4, avril 1990.

VENDRE (R.). –

transitoires.

Comportement des transformateurs condensateurs de tension pendant les régimes

RGE (F), déc. 1966.

WISZNIEWSKI (A) et IZYKOWSKI (S.). –

Influence of resonance suppression circuits upon the transient response of capacitive voltage trans former.

IEE Developpements in Power System Protection Conference Publication (GB), n o 125 (1975).

Transformateurs de mesure non conventionnels

ADOLFSSON (M.), AHLGREN (L.), EDLUND (H.), LINDBERG (P.), SAMUELSSON (J.) et EINVAL (C.). –

Un nouveau système de mesure opto électronique pour postes à haute tension.

CIGRE Session, Rapport 23.09 (1988).

BROOKS (H. B.) et HOLTZ (F. C.). –

The two stage current transformers.

AIEE J. (USA),

41

, p. 389 (1922).

Collectif. –

Méthodes modernes de mesure des courants.

RGE (F), n o 5, mai 1984.

FULCHIRON (D.). –

Les tores amagnétiques : utilisation dans un laboratoire d’essais.

RGE (F), n o 5, mai 1984.

GROENENBOOM (M.) et LISSER (J.). –

The zero-flux current transformer a high precision wideband measuring device.

AIM Liège (B) (1977).

HOBSON (A.). –

The zero flux current transformer.

AIEE Trans. (USA),

72

, p. 608 (1953).

JACQUIN (M.), VIGREUX (J.) et RICARD (L.). –

Reduc teurs de tension capacitifs à amplificateur élec tronique pour postes blindés à très haute tension.

AIM Liège (B), juin 1973.

LISSER (J.). –

Amplifier type voltage transformer design and experience.

Electric power Applica tions, vol. 2, n o 5, oct. 1979.

LISSER (J.) et Van De WATER (A. J.). –

Un trans formateur de courant à flux nul pour une grande gamme de mesures précises dans les systèmes haute tension à courant alternatif et à courant continu.

CIGRE, Rapport 34-03, Session (1986).

MOUTON (L.), STALEWSKI (A.) et BULLO (P.). –

Transformateurs de courant et de tension non classiques.

CIGRE Electra, n o 59, juil. 1978.

MOUTON (L.) et col. –

Transformateurs de courant et de tension non classiques.

CIGRE Rapport spécial CE / SC 34 (1980).

PETERSONS (O.). –

A self balancing current comparators.

IEEE Trans (USA),

IM 15

, p. 62 (1966).

PETTINGA (J.A.J.) et SIERSEMA (J.). –

A polyphase 5 0 0 I e A c u r r e n t m e a s u r i n g s y s t e m w i t h Rogowski coils.

IEE proceedings (USA),

130

, n o 5, sept. 1983.

SANDERS (T. M.). –

Wide-band two stage current transformer of high accuracy.

IEEE Trans. (USA),

IM 21

, p. 340 (1972).

SANKARAN (P.). –

Error analysis of the electronically compensated current transformer under transient conditions.

Electrotech. Z (D),

94

, p. 450 (1973).

Transformateurs optoélectroniques

ARDITY (H.), BOURBIN (Y.), PAPUCHON (M.) et PUECH (C.). –

Capteur ampèremétrique à fibre optique.

Revue technique Thomson-CSF (F), n o 3 (1981).

DUPRAZ (J. P.). –

Capteurs interférométriques de courant à fibres optiques. Principes et techno logies.

Revue technique ALSTHOM (F), n o 9 (1987).

FERDINAND (P.). –

Un nouveau type de capteur de mesure des courants électriques : l’inter féromètre bifréquence à fibre optique unimodale sensible à l’effet Faraday.

RGE (F), n o 5, mai 1984.

P L U S S A V O I R P O U R

Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite.

© Techniques de l’Ingénieur, traité Génie électrique

Doc. D 4 726

− 1

Dossier délivré pour Madame, Monsieur 17/09/2008

Dossier délivré pour Madame, Monsieur 17/09/2008

S A V O I R P L U S P O U R E N TRANSFORMATEURS DE MESURE _________________________________________________________________________________________________________

HEBNER (R. E.), MALEWSKI (R. A.) et CASSIDY (E.

G.). –

Optical methods of electrical measure ment at high voltage levels.

Proceedings of IEEE (USA),

65

, nov. 1977.

ROGERS (A.). –

A current measurement technique using Faraday magneto-optic effect in flint glass.

AIM Liège (B), Report 2-6, juin 1973.

ROYER (P.), KEVORKIAN (A.), RIVAL (R.), TURC (J.) et CHARDOT (B.). –

Capteur de courant à fibre optique.

RGE (F), n o 4, avril 1990.

SAWA (T.), KUROSAWA (K.), KAMINISHI (T.) et YOKOTA (T.). –

Development of optical instru ment transformers.

IEE Trans. (USA),

89

, TD 380 7 PWRD.

TANTIN (P.), CHATREFOU (D.) et MEYRUEIX (P.). –

Un grand pas dans l’industrialisation des réducteurs de mesure optique.

CIGRE, Rapport 34-15, Sesion (1988).

ULMER (E. A.). –

A high accuracy optical current transducer for electric power systems.

IEEE Trans. (USA),

89

, TD 382 3 PWRD.

France (UTE) Association Française de Normalisation (AFNOR)

Normalisation

NF C 42-502 2-74 caractéristiques.

Transformateurs de courant : caractéristiques.

Allemagne (République fédérale d’) Verband Deutscher Elektrotechniker eV (VDE)

0414 12-70 Spécifications pour les transformateurs de mesure : 1 re , 2 e et 3 e parties (Modif. 1 a 2-78).

États-Unis American National Standards Institute (ANSI)

C 57-13 1968 Requirements for instrument transformer.

Grande-Bretagne British Standards Institution (BSI)

BS 3938 1973 Specification for current transformers (1982).

BS 3941 1975 Specification for voltage transformers (1982).

International Commission Électrotechnique Internationale

CEI 60044-3 1980 Transformateurs de mesure. 3 e partie : Transforma teurs combinés.

185 186 1987 1987 Transformateur de courant.

Transformateur de tension (Modif. 1 1988).

801 Compatibilité électromagnétique pour les matériels de mesure et de commande dans les processus industriels [801-1 (1984) à 801-4 (1988)].

Les publications 185 et 186 sont remplacées par les publications sui vantes : CEI 60044-1 1996 Transformateurs de mesure. 1 re partie : Transfor mateurs de courants.

CEI 60044-2 2000 CEI 60044-6 1992 CEI 60044-5 en projet Transformateurs de mesure. 2 e partie : Transforma teurs inductifs de tension.

Transformateurs de mesure. 6 e partie : Prescrip tions concernant les transformateurs de courant pour protection pour la réponse en régime transi toire.

Transformateurs condensateurs de tension.

Dossier délivré pour Madame, Monsieur 17/09/2008

Doc. D 4 726

− 2 Toute reproduction sans autorisation du Centre français d’exploitation du droit de copie est strictement interdite. −

© Techniques de l’Ingénieur, traité Génie électrique