Transcript Document
Measurements of the unitarity triangle parameters at Belle II 名古屋大学 堀井泰之 Bファクトリー物理勉強会 第6回ミーティング (2011.6.11) 1 1. Introduction 2 Introduction KEKB collider Belle detector 3 SuperKEKB collider Belle II detector SuperKEKB Energy (e-/e+) = 7.0/4.0 GeV Our design value is on the U(4S) resonance. Data for other U resonances will also be taken. U(10860) (8.0/3.5 GeV for KEKB.) Luminosity = 8.0 x 1035 /cm2s 40 times higher than 2.1 x 1034 /cm2s by KEKB. (Small beam size: x 20. Large beam current: x2.) 4 SuperKEKB SuperKEKB 5 2020-2021年までに、KEKBの50倍のデータを取得したい。 Belle II detector 高いバックグラウンド環境に耐えられるように設計。それに加え、種々の性能向上。 ピクセル検出器導入による 崩壊点精度の向上(~20 mm) シリコン検出器の外径拡大(140 mm) によるKS (p+p-) acceptanceの向上 electron (7 GeV) positron (4 GeV) チェレンコフイメージ検出器 による粒子識別性能の向上 K± (p±)を95%の効率で選ぶ時、 p± (K±)は1%の確率でしか残らな い。6 LHCbに比べ、中性粒子を終状態 に含むモードに強みを持つ。 Measurements of the CKM parameters tension 7 Search for new physics from measurements of angles and sides of UT. 2. Measurement of f1(eff) and related topics 8 Measurement of f1 B0(cc)K0 B0(ss)K0 Standard Model: Discrepancy in the results between B0(cc)K0 and B0(ss)K0 could be a signature of new physics. 9 B(cc)K0 10 Belle preliminary (Moriond 2011) using full U(4S) data (0.71 ab-1). Consistent results for the four modes. B(cc)K0 sin2f1 (indirect CPV) A (direct CPV) Belle, 0.49 ab-1 0.642±0.031±0.017 0.018±0.021±0.014 Belle, 0.71 ab-1 0.668±0.023±0.013 0.007±0.016±0.013 BaBar, 0.42 ab-1 0.687±0.028±0.012 -0.024±0.020±0.016 Belle II, 5 ab-1 ±0.016 ±0.015 Belle II, 50 ab-1 ±0.012 ±0.013 Measured Expected O(0.01) precision at 50 ab-1. 11 B(ss)K0 50 ab−1 J/K0 fK0 S(fK0)=0.39 is assumed. O(0.01) precision at 50 ab-1. Comparable to B(cc)K0. 12 Note: tension in the CKM fit Tension between CKM fit and direct measurement of BR(Btn): ICHEP 2010 ~2.8s discrepancy Tension will be slightly loosened when we include new result on f1, while it will be still larger than 2.5s… Direct measurement of Btn at Belle II will be important. 13 Note: Btn at Belle II In Two-Higgs Doublet Model (THDM) Type II, the branching ratio of Btn can be modified. H- Figures: constrains on mH± and tanb at Belle II. 5 ab-1 assuming 5% errors for |Vub| and fB. 50 ab-1 assuming 2.5% errors for |Vub| and fB. Bmn is helicity-suppressed, and we need 1.6 ab-1 (4.3 ab-1) for 3s evidence (5s discovery). 14 Note: BDtn at Belle II Also sensitive to charged Higgs. H- Uncertainty in BD semi-leptonic form factor. 15 Exclusion boundaries 3. Measurement of f3 and related topics 16 Measurement of f3 f3測定はLHCbが有利とされている。しかし、実際にはとてもチャレンジング。 予想よりも多いBX当たりの反応。 17 Measurement of f3 L.Wolfenstein, PRL 51, 1945 (1983) Golden mode: B-DK- (and the conjugate) Crucial parameters for extracting f3: rB ~ 0.1 (CKM x color-supp). Method of measuring f3 f1, f2, f3測定のためには、|振幅|2がf1, f2, f3の関数になる崩壊を用いる。 _ f3測定は、D0とD0の同じ終状態 f への崩壊を利用し行われる。 f3測定法は、f により分類できる。 ① B-D0K- D0f GLW法 B_ B-D0K- f K- f3 _ ② D0f 分岐比 ∝ |A(①) + A(②)|2 19 ADS法 f = CP固有状態(K+K-, p+p-, KSp0, …)。 f = K+p-, K+p-p0など。 Dalitz法 f = KSp+p-など。Dalitz解析。 GLW method Relatively small contributions from CP-violating terms, since rB is small (~0.1). 20 Non-zero ACP+ obtained. Useful for extracting f3. ADS method First evidence of the signal obtained. (At rB=0.1, RADS is in 0.002-0.025.) f = K+p- Well-balanced |amplitudes|. f = K+p- Sensitivity for f3 via GLW+ADS is 15° at 1 ab-1 and 3° at 50 ab-1. 21 Dalitz method Previous measurement: 22 Modeling of amplitudes on Dalitz plane. (Especially strong phase for the D decays.) Dalitz method 23 ci and si are obtained by _ CLEO using (3770)D0D0. Dalitz method Belle preliminary (Moriond 2011). Consistent with CKM fit w/o direct measurement: f3 = 67.2° ± 3.9°. Precision of ci, si will be improved by BESIII measurements. Expected precision for f3 at 50 ab-1 is 2°. 24 _ D0-D0 mixing J. P. Silva and A. Soffer, PRD61, 112001 (2000). Y. Grossman, A Soffer, and J. Zupan, PRD72, 031501(R). _ D0-D0 mixing is the largest theoretical uncertainty in the extraction of f3. However, it can be safely neglected at the current precision: df3~10°. The effect will be relatively larger at Belle II, while it can be explicitly included in the extraction of f3. Current contours 50 ab-1 25 Current contours 50 ab-1 Precision at 50 ab-1 Note: Kp puzzle DCPV due to Vub. If the only diagrams are a and b, we expect a b However, significant difference is obtained. BKp w/ 0.5 ab-1 Nature 452, 332 (2008) Missing diagrams? Large theoretical uncertainty… 26 K-p+ K+p- K-p0 K+p0 Note: DCPV for BKp at Belle II We can compare to a model-independent sum rule: 27 Current measurement larger error for ACPK0p0 expected expected measured measured Can be represented as diagonal band (slope precisely known from B and lifetimes): 50 ab-1 assuming current central value Summary SuperKEKB Belle II 40 times higher luminosity of 8.0 x 1035 /cm2s. Will reach 50 ab-1 by the end of 2021. Conservatively designed to cope with high background. Improvements in several aspects: vertex, KS acceptance, PID, … Examples of physics at SuperKEKB/Belle II 28 Measurement of f1(eff) from B0(cc)K0 and B0(ss)K0. (Relation to the tension for Btn. Note on BDtn.) Measurement of f3 from the tree BDK (GLW, ADS, Dalitz). (Relation to D0-mixing and direct CPV in BKp.) Backup Slides 29 SuperKEKB Collider Approved in 2010. Belle II e- Smaller asymmetry 8 / 3.5 GeV 7 / 4 GeV e+ Larger crossing angle 2f = 22 mrad 83 mrad for separated final-focus magnets. High currents e-: 2.6 A e+: 3.6 A Replace short dipoles with longer ones (LER). Small beam sizes sx~10mm, sy~60nm Damping ring Redesign the lattices of HER & LER to reduce the emittance. TiN coated beam pipe with antechambers 30 L = 8 x1035 cm-2 s-1 31 Belle II detector 32 Dimensions for Belle II and Belle detectors 33 Feb. 24th, 2011 H.Nakayama (KEK) 33 Expected Performance for Belle II 34 Vertex Detector Improve decay-time precision and acceptance (KS’s). 4lyr. Si strip 2lyr. pixel(DEPFET) + 4lyr. Si strip Si strip pixel 5th lyr. 4th lyr. 3rd lyr. 2nd lyr. 1st lyr. Pixel: r=14,22mm Si strip: r=38,80,115,140mm Belle II Belle 4th lyr. 2nd lyr. 1st lyr. 35 6th lyr. 3rd lyr. Particle Identification System at Belle II Endcap PID: Aerogel RICH (ARICH) Barrel PID: Time of Propagation Counter (TOP) 200mm Quartz radiator Focusing mirror Hamamatsu MCP-PMT (measure t, x and y) Aerogel radiator n~1.05 Hamamatsu HAPD + new ASIC TOP n1 n2 Completely different from PID at Belle, with better K/p separation, more tolerance for BG, and less material. 36 Multiple aerogel layers with different indices sq(1p.e.) = 14.4 mrad Npe ~ 9.6 sq(track) = 4.8 mrad Other Upgrades for Belle II Silicon vertex detector: new readout chip (APV25) shorter integration time (800 ns50 ns) Drift chamber: smaller cells Belle Belle II Calorimeter: new readout system with waveform sampling (x1/7 BG reduction) KL/Muon detector RPCScintillator+MPPC Better performance against neutron BG 37 Physics at SuperKEKB/Belle II A benefit to use One B meson (“tag” side) can be reconstructed in a common decay. Flavor, charge, and momentum of the other B can be determined. Effective for the modes including missing energy. Missing Also possible to partially reconstruct (semileptonically, …). 38 39 A. Poluektov et al., PRD 81, 112002 (2010) B-D(*)K-, DKSp+p- Dalitz Amplitude of B±DK± process can be expressed as Ratio of magnitudes of interfering amplitudes. Amplitude of DKSp+p- decay determined from Dalitz plot of large continuum data (Flavor is tagged by soft-pion charge in D*±Dp±soft). Isobar-model assumption with BW for resonances. Procedure of analysis: 1. 2. 40 Background fractions are determined by 2-D UML fit for DE and Mbc. Fit is performed to m± (Dalitz plane). A. Poluektov et al., PRD 81, 112002 (2010) B-D(*)K- Dalitz, Result 657 M BB Using the background fractions, Dalitz plane is fitted with the parameters x± = r±cos(±f3+d) and y± = r±sin(±f3+d). Combining the results for BD(*)K, we obtain 41 Model-independent analysis will be applied for 772M BB. Measuring si and ci for model-indep. Dalitz 42 43 44 45 46 47