長距離相互作用系の準安定状態(PPTファイル)

Download Report

Transcript 長距離相互作用系の準安定状態(PPTファイル)

1
長距離相互作用系の
準安定状態
京都大学大学院人間・環境学研究科
阪上雅昭
Collaboration with
熱海合宿08/04/01
樽家篤史 (RESCEU, 東大)
岡村 隆 (関学)
立川崇之 (工学院大学)
D.C. Heggie (Univ. of Edinburgh)
Self-gravitating Stellar System
A System with N Particles (stars) (N>>1)
Particles interact with Newtonian gravity each other
2
H 

i
pi
2mi

i

ji
Gm i m j
| xi  x j |
Typical example of a system
under long-range force
Key word
Negative Specific Heat
Long-term (thermodynamic) instability ( t  trelax )
Gravothermal instability
Antonov 1962
Lynden-Bell & Wood 1968
2
Two typical examples of self-gravitating stellar systems
Globular cluster
N  10
6
collisional system (discussed in this lecture)
relaxation time << age of universe
Elliptical galaxy
collisionless system
N  10
11
(NOT discussed )
relaxation time >> age of universe
3
Time scales of Self-gravitating System
free-fall time
T free 
4
Motion driven
by mean
gravitational
potential
1
G
Dynamical time scale

Mean mass density
two-body relaxation time
T relax  0 . 1
N
ln N
T free
time scale for approaching
to thermal equilibrium
Time scale for
loss of memory
by two-body
collision
relaxation
Intuitive explanation of Negative Specific Heat
Circular Motion under Gravity
Eq. of Motion
m
K 
mathematica
Virial Theorem
Total Energy
v
2
R
Kinetic Energy
m
v

GmM
R
2
Grav. Potential
2
V  
GmM
R
2
2 K  V
E  K V  K
E  0
Energy decreasing
Negative
specific Heat
K  0
“Temperature” increasing
5
6
Antonov problem
Presence of secular instability and/or equilibrium properties of
stellar system had been considered in a very idealistic situation.
(Antonov 1962)
Adiabatic wall
(perfectly reflecting boundary)
Self-gravitating
N-body system
radius:re
mass:M=N×m
energy:E
re
Isothermal state & its stability
7
Boltzmann3
3
S


d
x
d
v f ( x, v ) ln f ( x, v )
BG
Gibbs entropy

Extremization
0   SBG    M    E
Isothermal distribution
l – reE/GM 2
f ( x , v )  exp(    ) ;
Large
l crit = 0.335
re
  v / 2   (x )
2
D  c / 
No stable isothermale state
 exists at
c
Large re :
re  lcrit GM
 /(  E )
2
e
High density-contrast :
D  Dcrit
D crit = 709
D= c/ e
Gravothermal instability
Gravothermal Catastrophe
CV  0
Heat flow
core = self-gravitating
8
Negative specific heat
CV  0
core halo
halo = normal system
CV  0
Tcore > Thalo
Heat flow from
core to halo
Negative specific heat
CV  0
Tcore↑
CV  0
Thalo↑
sufficiently large wall
re > rc
Tcore > Thalo
heat flow does not stop!!
Core-collapse !!
extended halo has large heat capacity
Consequence of instability
9
The system does not always approach the thermal equilibrium
(isothermal distribution)
t dyn
Initial
conditions
t relax
Dynamical equilibrium
(virialized)
Thermal
equilibrium
Core collapse
!!
(isothermal state)
To clarify the fate of the system,
Description of
non-equilibrium states
is essential.
transient states
Rest of this talk
An attempt to characterize the evolutionary states of N-body system
both from thermostatistical and dynamical point-of-view
Theoretical investigation
10
Particularly focusing on the setup of Antonov problem,
Thermostatistical approach
analytical
generalized thermostatistical formalism
Physica A 322 (2003) 285
Dynamical approach
numerical
N体シミュレーション
Phys.Rev.Lett. 90 (2003) 181101; MNRAS (2005)
Kinetic-theory approach
semi-analytical
Fokker-Planck eq. + 一般化された変分原理
A.Tatuya, Okamura & Sakagami (2007), in preparation
A naïve generalization of BG statistics
11
As a possible generalization of thermostatistical treatment,
q-entropy
3
3
Sq   1  d x d v
q 1
  p ( x , v )
q
 p(x, v)

BG limit q→1
Tsallis, J.Stat.Phys.52 (1988) 479
One-particle distribution function
identified with escort distribution
q
f ( x , v)  M
Power-law distribution
{ p ( x , v)}
 d x d v { p( x, v)}
3
3
q
p  p p
f ( x , v )  A  0   
q /( 1  q )
  v / 2  ( x )
2
Stellar polytrope as quasi-equilibrium state
12
This power-law type distribution is well-known in subject
of stellar dynamics, referred to as
“stellar polytrope”
(e.g., Binney & Tremaine 1987)
Polytropic equation of state
P( r )  K n 
11 / n
1
1
Polytrope
n

index
1 q 2
(r)
n→∞
BG limit
Stellar polytrope as quasi-equilibrium state
13
n=6
Energy-density contrast
relation for stellar polytrope
stable
unstable
oscillatory behavior appears
when n>5.
For larger densiy D>Dcrit,
unstable state appears at n>5
(gravothermal instability)
Stellar dynamical simulations
14
Perfectly reflecting
N-body simulation
Long-term evolution of N-body system
confined in an adiabatic wall
Adiabatic
wall
※ we use GRAPE-6 @ NAOJ
E=M=const.
re
Unit: G=M=re=1
Initial conditions
( n=3, 5, 6, 

Group A
Stellar polytropes

Group B
A family of stellar model with cusped profile
(non-polytropic models)
1
 (r ) 
r
3 
(r  a )
1 
Tremaine et al. AJ 107 (1994) 634
Overview of the N-body results
15
Stellar polytropes are not stable in timescale of two-body relaxation.
However, focusing on their transients, we found :
Quasi-equilibrium property
Transient states approximately follow a sequence of stellar
polytropes with gradually changing polytrope index “n”.
Quasi-attractive behavior
Even starting from non-polytropic states, system soon
settles into a sequence of stellar polytropes.
Survey results of group (A)
16
The evolutionary track
keeps the direction
increasing the polytrope
index “n”.
Once exceeding the critical
value “Dcrit“, central
density rapidly increases
toward the core collapse.
Run n3A (1)
Density profile
17
Stellar polytrope
(n=3,D=10 4)
One-particle distribution function
1
Fitting to stellar polytropes is quite good until t ~ 30 trh,i.
2
v   ( x)
2
18
Run n3A (2)
unstable
stable
Time evolution of polytrope
index “n” fitted to N-body
simulations
Polytrope index monotonically
grows on relaxation time-scale
t rh, i
 rh

 0 . 138
ln( 0 . 1 N )  GM
N
3




1/ 2
19
Survey results of group (B)
Stellar model:
Case (A)
1
 (r ) 
r
3 
(r  a )
1 
model parameters → , a
Case (B)
Fitting failed
Fitting to polytrope is good
Region where stable isothermal
(BG) state can exist.
Quasi-attractive behaviors appear when 1< h & ~
20
Cases with a/re=0.5 (1)
η=1
Distribution function
Rapid Core Collapse (×)
η=1.5
Approaching to
Isothermal(△)
η=3
Approaching to polytrope (○)
21
Cases with a/re=0.5 (2)
η=1
Density profile
(×) small core → rapid collapse
Fitting failed
η=1.5
almost Isothermal
Larger core approaches to Polytrope
Fitting is GOOD
η=3
22
Kinetic-theory approach
For a better understanding of the quasi-equilibrium states,
Fokker-Planck (F-P) model for stellar dynamics
orbit-averaged F-P eq.
  f ( ) 
   ( ) 






 t

  t
;   16  G m ln 
2
2
2
  ln f ( )  ln f ( ) 
 ( )   d  f ( ) f ( ) min[  ( ),  ( )] 









2
16 
3/2
2


 ( ) 
dr
r
2
[



(
r
)]
phase space volume

3
Complicated, but helpful for semi-analytic understanding
F-P eq.に対する一般化された変分原理
23
Glansdorff & Prigogine (1971)
Local potential
Inagaki & Lynden-Bell (1990)
 f 0 

 ln f  
  ln f
( f , f 0 )   d 
ln
f




d

d

f
f
min(

,

)



0 0
0
0 

4
  
 t 
 
Variation
w.r.t. f

 f
( f , f0 )
0
F-P equation for f 0
f  f0
Absolute minimum at a solution
f0
  ( f , f 0 )  ( f 0 , f 0 )  0
Application:
Takahashi & Inagaki (1992); Takahashi (1993ab)
2
熱伝導 の場合
 T0
24
 T0
2

t
x
2
Local potential
 ( T , T0 ) 
 dx L ( T , T
variation w.r.t. T
  ( T , T0 )
T
1
0
L ( T , T0 ) 
)
1

2  T
T 0 
2
 x
2

 T0
 
T
t

1
1
0
 T 02

   2
t
T
 T0
subsidiary condition
 T0
T  T0
t
2
  2T
 T   T0 

 2   0

2
x x  T 
 x
 T0
2

x
2
absolute minimum
   ( T , T 0 )   ( T 0 , T 0 ) 
2
2   
dx

T
 0
0 

2
 x 
1
 T
1
1
 T0
Local Potential の導出
e
エネルギー保存
t
熱伝導
 
q  l
25
q
e :内部エネルギー密度
e  e0   e
x
T
 lT
x
2
T
1
 e
t
x
 
q
x
q

:熱流
 e0
t
過剰エントロピー生成
1 
 S    dx  T
2 t
2
1
 e
t

 dx  T
l T  l T 0   l T
2
1
l 2  T
  dx T 0  
2
 x
O  T 

O  T 
2
2


1
2
 dx  l T
2
2
1
  q  e0 



t 
 x

 dx
l
1
2  T
T  
2
 x
e0  cV T0
2

e
  0  T
t

  l cV
2

e
  0  T
t

    T
1


 x 
2
1
(T , T0 )  0
1
Stellar Dynamics への適用
K.Takahashi, PASJ 45,233 (1993)
26
pre-collapse
post-collapse
C

C
t / t rhi
t / t rhi
C
t / t rhi
r
一般化された変分原理による “n”の発展方程式
27
Assuming stellar polytropes with time-varying polytrope index as
quasi-equilibrium state,
trial function
n ( t ) 3 / 2
f ( )  A(t )[ 0 (t )   ]

n
( f , f 0 )
0
( A and  0 are the functions of n)
n, E, M の関数
f  f0

 l    
  ln f
 l     




d


(

)




 







 l 
  e  n  n  e  n  e   e  n 



n (t )  
2




 e n
 l    ln f 

 l    ln f  




d

f
(

)


 


  n 
 



n



 e 
 e 
e n 
 e  n 

Semi-analytic prediction: evolution of “n”
Time evolution of
polytrope index “n” fitted
to N-body simulations
Time-scale of quasi-equilibrium states is successfully reproduced
from semi-analytic approach based on variational method.
28
29
Numerical n-dn/dt curves: linear
plot
Units : G  M  re  1 and   1
ハイブリッド法による数値積分
(基研でのバッチジョブ)
Note-.
l=0.1
For n>5 and l<0.335, dn/dt
curves approach a linear curve.
0.15
0.2
0.25
0.3
0.35
0.45
l=1.2
0.5
0.4
30
Numerical n-dn/dt curves: log-log plot
Units : G  M  re  1 and   1
l=0.1
Note-.
0.15
For l>0.335, dn/dt eventually
becomes vanishing at ncrit.
0.2
0.25
0.3
l>0.335
0.35
0.4
l=1.2
0.5
0.45
31
n-dn/dt curves : approximation
ncrit is function of l and
is determined by solving
For the curves with l0.335,
dn
dt
  c*
n  n crit
n crit  5
dl / d e  0
; c *  0 . 16
n ( t )  n crit  { n crit  n ( 0 )} e
 t / *
;  *  ( n crit  5 ) / c *
(n>5)
For the curves with l<0.335,
dn
dt
3
 A1 ( l )  A 2 ( l ) ( n  5 ) ; Ai ( l ) 

a ik ( l  0 . 335 )
k
(i=1,2)
k 1
n ( t )  5  A1 / A2  { n ( 0 )  5  A1 / A2 } e
A2 t
(n>5)
( units: G  M  re  1 and   1 )
32
Analytic estimate of n(t): comparison
Analytic estimate based on
variational method successfully
reproduces the N-body results.
Half-mass
relaxation time
t rh, i
3
N  rh

 0 . 138
ln   GM




1/ 2
33
Summary
(1) 重力多体系
(2) 準定常状態
長距離力(引力)
比熱が負
small system
非平衡進化
準定常状態が存在
ポリトロープ状態の系列で記述できる
P( r )  K n 
11 / n
(r)
n
1
1 q

1
2
(3) ポリトロープ指数 n の時間発展
一般化された変分原理
Fokker-Planck eq.
ポリトロープ状態: Trial func
指数 n の時間発展方程式
が導出できる
Work in Progress
(1) ポリトロープ
準定常状態: 他の例はあるか
2次元HMFモデルの解析
(2) ポリトロープ
準定常状態: 長距離相互作用が本質?
Yukawa 型相互作用での解析
(3) ポリトロープによる準定常状態の記述の限界
ポリトロープは core collapse 前しか適用できない?
34
Polytrope による準定常状態の記述の限界
Fokker-Planck eq. によるCore-Collapse の解析
35
self-similar evolution
CV  0
Heat flow
core halo
CV  0
self-similar core collapse が
始まると polytrope で fit できない
H.Cohn Ap.J 242 p.765 (1980)
Self-similar sol. of F-P eq.

36
Heggie and Stevenson,
MN 230 p.223 (1988)

power law envelope
ln 
 r
 2 . 21
n  9 .7
ln r
isothermal core
fitting of self-similar sol. with double polytrope
f ( )  A
37
n
n 


 0    1  c  0    2


Black dots: Numerical Self-Similar sol.
by Heggie and Stevenson
f ( )
Magenta lines: fitting by double polytrope
n 1  9 . 538

n 2  16 . 73
c  3 . 59

r
Summary & Discussions
Stellar Polytrope は,球状星団(collisional self-gravitating
N-body system) の状態を記述するのに適している
collapse 前 single polytrope, index n が大きくなる
collapse 後
central core と envelope
2つの stellar polytrope の重ね合わせで表せる
n1
n2 

f (  )  A  0     c  0   


n 1 , n 2 , c ...
の時間発展はFokker-Planck 方程式に
に対する一般化された変分原理から導出
できるはず...
38
39
2次元HMFモデル
Antoni&Torcini PRE 57(1998) R6233
Antoni, Ruffo&Torcini, PRE 66(2003) 025103R
H 
1
N
(p

2
2
x ,i
 p y ,i )
2
i 1

1
2N
N
  3  cos( x
i
 x j )  cos( y i  y j )  cos( x i  x j ) cos( y i  y j ) 
i, j
平均場と相互作用: 長距離相互作用系
1次元HMFモデルの準定常状態は精力的に研究されている
2次元に拡張することで,2体散乱によるエネルギー輸送を
含める
U  1 . 95
Magnetization
T-U 曲線 熱平衡 平均場
T
U
N  10 , N  9  10
4
熱平衡
準定常状態
polytrope ?
t/N
Vlasov phase ?
分布関数
分布関数
vx
4
vx
40
U  1 .8
N  9  10
q3
t  2 . 5  10
5
q  1 .2
Magnetization
t  5  10
4
3
t
t  2 . 5  10
q  1 .5
4
41