Transcript coil - JLC

Jun. 28, ‘06
超伝導電磁石/鉄ヨーク/実験室について
高エネルギー加速器研究機構 山岡 広
田中 賢一
目 次
・概 要
・ 超伝導電磁石について
・ 鉄ヨークについて
・ 実験室について
・まとめ
1
Introduction
Solenoid/Iron yoke
Solenoid magnet
17m
Cable
Iron Yoke
Muon Tracker
H-Cal
EM Cal
Magnetic field: 3T
Mean radius: 4m
Uniformity(TPC): <2mm
Leakage field(@10m): <50gauss
TPC
VTX
Yoke Design
- Design against magnetic field
- Design against forces
- Assembly procedure
- Cable path
- Support for sub-detectors
- Access plan to the sub-detector
Earthquake
Solenoid Design
- Coil/superconductor design
- Cryostat design
- Coil support
- Assembly/Installation
- Thermal design
- Cryogenics system
2
Solenoid magnetについて
t40mm
Al support cylinder
t30mm
50cm
t100mm
2 layers
4 layers
t60mm
2 layers coil + Correction Coil(4 layers)
Central magnetic field
# of turns(2 layers)
Current density
Nominal current
Stored Energy
3T
2880
741A/mm2
7956A
1.60GJ
Superconductor
(Based on ATLAS coil)
6.5mm
4.3mm
NbTi:Cu:Al= 1:0.9:15.6
Strand diameter: 1.23mm
Filament diameter: 20mm
Jc in NbTi at 5T, 4.2K:
> 2750A/mm2
4.2mm
Ic at 5T, 4.2K: > 20300A
3
30mm
(-0.55) - 0
3.72m
4.4m
4.75m
191
4.0m
4.43m
78
45mm
Uniformity(mm)
Cryostat Inner radius
Outer radius
Half length
Weight(tons)
Coil
Mean radius
Half length
Weight(tons)
5002 8 LUJ
13:64:91
Support cylinder
(t=30mm, Aluminum)
Deformation of the coil (By K.Tanaka)
7mm
Conductor
(h=45mm)
R4.0m
2=
1=
2=
270800.=
Solenoid center
3mm
4.43m(Half)
Stress level in the coil (By K. Tanaka)
140
Development of High-strength Al
120
S tre s s (M P a )
100
80
Von Mises
Circum. direction
60
40
20
Compression
Axial direction
0
-20
-40
0 .0
0 .5
1 .0
1 .5
2 .0
2 .5
3 .0
3 .5
4 .0
4 .5
4
D is ta n c e fro m c e n te r (m )
By Makida
Design of Coil supports (by K. Tanaka)
DZ
DR
Axial dir.
De-centering force (Unbalance force)
Coil
Phi dir.
Iron
Coil supports
8000
R ad ial d ir.
Static loads
- Cold mass: 78 tons
- De-centering force: 380 tons (Axial)
(Unbalance force) 130 tons (Radi)
Rough estimation;
F60mm, 6x2 rods(Phi), 14 rods(Axial)
- Thermal load: 5 Watt
- Thermal shrinkage: 40mm(Axial)
20x10e-6/℃
20mm(Phi)
D e-cen terin g fo rce(kN )
7000
Axial d ir.
6000
5000
4000
3000
2000
1000
0
0
5
10
15
20
25
30
35
40
45
50
D e via tio n (m m )
Detail design is necessary.
5
Cryostat
Assumption
Weight of calorimater is
supported on the inner
vacuum wall.
2000tons
Fixed
2000tons
x0.3G
Fixed
Fixed
t=100mm
Fixed
t=40mm(Outer vac. wall)
t=60mm(Inner vac. wall)
(End plate)
125MPa
118MPa<140MPa
9mm
9mm
Material: Stainless steel
Outer vac. Wall: 40mm
Inner vac. Wall: 60mm
End plates:
100mm
6
Assembly procedure
Coil assembly process
Winding Machine
Reference:
SDC
Thin superconducting solenoid view
graphs for the DOE review presentation
Oct. 26-27, ‘92
7
Magnet assembly process
Outer vac. vessel
Reference:
SDC
Thin superconducting solenoid view
graphs for the DOE review presentation
Oct. 26-27, ‘92
8
鉄ヨークの設計について
ケーブル
・磁場に対する設計
磁場均一度、漏れ磁場
→ 鉄形状最適化
・力に対する設計
自重、地震力、電磁力< 許容値
→ 支持形状の検討
自 重
・組み立て方法等
超伝導電磁石
磁場
電磁力
容易な据え付け及び精度の確保
ケーブル及び測定器のサポート
メンテナンス
・コストの抑制
3T
地震
9
磁場に対する設計
Coil-L
R4.0m
Coil-M
Coil-C
io
dz
4.25m
Jcorr/Jmain
Added!
0.4
0.4
0.4
3.6
3.6
3.6
0.5
0.5
0.5
CoilL CoilLeyinra eyinr Coil-L -Main Corr Ratio
0.18
0.47 0.75
4.43 3.43
1 1.5
0.18
0.47 0.75
4.43 3.43
1 1.3
0.18
0.47 0.75
4.43 3.43
1 1.4
0.4
3.6
0.5
0.18
dr
io ithck dz
0.47
0.75
4.43
3.93
0.5
2.0
Bmin Bmax Bc
Unif
2.970
2.993
3.035
2.998
3.040
3.067
2.976
3.031
3.031
0.934
1.546
1.043
2.955
2.977
2.960
0.739

B
Unif (%)   1  min
B max


  100


0.6
3.6
3.6
3.6
3.6
0.5
0.5
0.5
0.5
0.18
0.18
0.18
0.18
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
4.43
4.43
4.43
4.43
3.93
3.83
4.03
3.98
0.5
0.6
0.4
0.45
2.0
2.0
2.0
2.0
2.957
2.980
2.981
3.001
2.977
3.018
3.004
3.022
2.961
2.989
3.000
3.015
0.672
1.259
0.766
0.695
0.6
0.8
1
1.2
1.4
1.6
1.5
1.3
3.4
3.2
3
2.8
2.6
2.4
2.5
2.7
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.18
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
3.93
3.93
3.93
3.93
3.93
3.93
3.93
3.93
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.997
2.993
2.989
2.998
2.995
2.992
2.997
2.998
3.013
3.007
2.998
3.004
2.998
2.999
3.001
3.002
3.001
2.996
2.991
3.000
2.997
2.998
3.000
2.999
0.531
0.466
0.300
0.200
0.100
0.233
0.133
0.133
0.5
U n ifo rm ity (% )
0.4
0.4
0.4
0.4
0.4
0.3
0.2
0.1
2.4
2.6
2.8
3.0
io (m )
10
3.2
3.4
漏れ磁場
Magnetic field (t=50cm:4th,5th)
90
80
Air Gap
L e a k a g e F ie ld (G a u s s )
70
60
50
40
30
50cm
50cm
25cm
20
10
10m
0
0
10
20
30
40
50
60
70
80
90
100
A ir G a p (m m )
0.1
1
Uniformity (mm)
M a g n e tic F ie ld (T )
Magnetic field along the beam axis.
0 .1
0 .0 1
磁場均一度 < 2mm
0
-0.1
R=0.4m
R=0.6m
R=0.8m
R=1.0m
R=1.2m
R=1.4m
R=1.6m
R=1.8m
R=2.0m
R=2.05m
-0.2
-0.3
-0.4
-0.5
1 E -3
-0.6
0
1 E -4
0
5
10
15
20
25
D is ta n c e fro m c e n te r(m )
30
0.5
1
1.5
2
2.5
Distance from center (m)
11
構造解析
Self-weight
1.4mm
8250tons
Support positions
Seismic force
2.8mm
Thickness= 5cm
0.3G
Stress level is small enough.
12
Support plate
Support plate:
75mm-thick
170MPa
2mm
13
14
Assembling procedures
Dodecagon(12 gon)
Transportation limit
3.2W x 12m Length
Barrel Yoke
Iron plates to be bolted
on the support frame
Support jig at
each corners
15
End Yoke
Iron plates (blue parts) are
assembled by welding.
Upper/Lower end yoke is
ssembled by welding.
Put them on the
support stand
16
Experimental hall
・エレキ小屋?
・チムニー?
・冷凍機関係?
Solenoid installation
During maintenance
Solenoid
17
Solenoid magnet
Coil: 78tons
Outer Vac. Wall(SUS, t40mm): 81tons
Inner Vac. Wall(SUS, t60mm): 105tons
Bulk heads: 25tons
Other components: 4tons
Total weight: 215tons
End-Yoke(One quadrant)
1000tons
18
19
Way to open the end yokes
Open the end yoke
Steady state
12m
Moving
Maintenance position
20
Conclusion
Shape
Muon
Uniformity(mm)
Barrel
End
Width(Half)
B.Yoke(tons)
E.Yoke(tons)
Total(tons)
Leakage Field
Octagon
Dodecagon
10cm
5cm
(-0.55) - 0 (-0.55) - (+0.05)
5 layers
9 layers
6 layers
11 layers
7.45m
8.025m
7900
8250
2000x2
4172x2
11900
16594
*90 gauss
43 gauss
- Leakage field must be acceptable.
- Difference between octagon and dodecagon is not so large.
- Support configuration for the magnetic force should be considered.
- Realistic end-yoke moving device should be designed.
Solenoid Magnet
Al support cylinder
Cryostat
t30mm
50cm
2 layers
4 layers
- Detail design of the coil supports will be done.
- Solenoid support configuration will be made.
- Assembly/Installation plan should be considered.
Coil
Inner radius
Outer radius
Half length
Weight(tons)
Mean radius
Half length
Weight(tons)
Central magnetic field
# of turns(2 layers)
Current density
Nominal current
Stored Energy
3.72m
4.4m
4.75m
191
4.0m
4.43m
78
3T
2880
741A/mm2
7956A
1.60GJ
21
今後の課題 (Solenoid magnet)
- Cryostat design
- O.rad: 4.4m x I.rad: 3.72m x Length: 9.5m
- 40mm(Outer), 60mm(Inner), 100mm(End)
Support configuration for Calorimeter
(-0.55) - 0
3.72m
4.4m
4.75m
191
4.0m
4.43m
78
Central magnetic field
# of turns(2 layers)
Current density
Nominal current
Stored Energy
3T
2880
741A/mm2
7956A
1.60GJ
140
120
100
S tre s s (M P a )
- Coil design
Superconductor: 6.5mm x 45mm
Magnetic force on the coil: 130MPa max.
Coil support design
- Cold mass(78 tons) + Decentering force(380 tons)
- Thermal shrinkage/Load
(60mm dia., 6x2 rods in phi, 14 rods in Z.)
Uniformity(mm)
Cryostat Inner radius
Outer radius
Half length
Weight(tons)
Coil
Mean radius
Half length
Weight(tons)
45mm
- General design
- Magnetic field: 3T
- Size: 4m radiusx8.86m length
- 2 layer (Main coil) + 4 layer (Correction coil)
- Calorimeter: Inside of the solenoid
- In-direct cooling
80
60
40
20
0
-20
-40
6.5mm
0 .0
0 .5
1 .0
1 .5
2 .0
2 .5
3 .0
3 .5
4 .0
D is ta n c e fro m c e n te r (m )
- Make engineering drawings.
- Assembling procedure
- Thermal design
- Cryogenic design
22
4 .5
今後の課題(Iron Yoke)
- Magnetic field design
Optimization of yoke configuration in several conf.
Boundary conditions
- <2mm in TPC volume, <50 gauss at 10m from I.P.
- Detector region: R3.5m, Z= 4.25m
- Mechanical design
Stress/deformation against;
- Magnetic force: 18400 tons
- Self-weight: 8250 tons(B.Y)
- Seismic force: 0.3G in the horizontal direction
Precise calculations are necessary.
Detail design of support structure
- Make engineering drawings of;
Iron yoke, Barrel yoke, End yoke
- Assembling procedure
Barrel yoke, End yoke
- Experimental hall (Not fixed!)
- Layout
- E.Y. moving mechanism
Detail design is necessary.
23
おわり
24
磁場に対する設計
鉄の飽和と均一度の改善
・超伝導電磁石
- 中心磁場: 3T
- 半径:4m
- 全長:~9m
B I
要求
- 磁場均一度:< 2mm
- 漏れ磁場@10m from I.P.
< 50gauss
⇒ 鉄形状の最適化
B I
Z1
Z2
R2
超伝導電磁石
Z1、R1を最小化
Z2、R2を最適化
R1
均一度:<2mm
25
Octagon
Dodecagon
Shape
Muon
Uniformity(mm)
Barrel
End
Width(Half)
B.Yoke(tons)
E.Yoke(tons)
Total(tons)
Leakage Field
Octagon
Dodecagon
10cm
5cm
(-0.55) - 0 (-0.55) - (+0.05)
5 layers
9 layers
6 layers
10 layers
7.45m
8.025m
7900
8250
2000x2
4172x2
11900
16594
*90 gauss
43 gauss
26
(a) 500mm-thick iron
M a g n e tic F ie ld (T )
Leakage field: <50 gauss at 10m from I.P.
C : N e w O p tio n
1
A c o n f.
B c o n f.
0 .1
(b) 250mm-thick iron
0 .0 1
1 E -3
1 E -4
0
5
10
15
20
25
30
D is ta n c e fro m c e n te r(m )
Option
(a)
Muon
10cm
Barrel
5 layers
End
6 layers
Width(Half)
7.75m
Uniformity(mm) (-0.9) - (-0.15)
Leakage Field
56 gauss
(b)
5cm
9 layers
11 layers
8.00m
(-0.5) - (+0.)
43 gauss
(c)
5cm
7 layers
9 layers
8.15m
(-1.9) - (-0.45)
40 gauss
(c) 500+250mm-thick iron
27