Transcript coil - JLC
Jun. 28, ‘06 超伝導電磁石/鉄ヨーク/実験室について 高エネルギー加速器研究機構 山岡 広 田中 賢一 目 次 ・概 要 ・ 超伝導電磁石について ・ 鉄ヨークについて ・ 実験室について ・まとめ 1 Introduction Solenoid/Iron yoke Solenoid magnet 17m Cable Iron Yoke Muon Tracker H-Cal EM Cal Magnetic field: 3T Mean radius: 4m Uniformity(TPC): <2mm Leakage field(@10m): <50gauss TPC VTX Yoke Design - Design against magnetic field - Design against forces - Assembly procedure - Cable path - Support for sub-detectors - Access plan to the sub-detector Earthquake Solenoid Design - Coil/superconductor design - Cryostat design - Coil support - Assembly/Installation - Thermal design - Cryogenics system 2 Solenoid magnetについて t40mm Al support cylinder t30mm 50cm t100mm 2 layers 4 layers t60mm 2 layers coil + Correction Coil(4 layers) Central magnetic field # of turns(2 layers) Current density Nominal current Stored Energy 3T 2880 741A/mm2 7956A 1.60GJ Superconductor (Based on ATLAS coil) 6.5mm 4.3mm NbTi:Cu:Al= 1:0.9:15.6 Strand diameter: 1.23mm Filament diameter: 20mm Jc in NbTi at 5T, 4.2K: > 2750A/mm2 4.2mm Ic at 5T, 4.2K: > 20300A 3 30mm (-0.55) - 0 3.72m 4.4m 4.75m 191 4.0m 4.43m 78 45mm Uniformity(mm) Cryostat Inner radius Outer radius Half length Weight(tons) Coil Mean radius Half length Weight(tons) 5002 8 LUJ 13:64:91 Support cylinder (t=30mm, Aluminum) Deformation of the coil (By K.Tanaka) 7mm Conductor (h=45mm) R4.0m 2= 1= 2= 270800.= Solenoid center 3mm 4.43m(Half) Stress level in the coil (By K. Tanaka) 140 Development of High-strength Al 120 S tre s s (M P a ) 100 80 Von Mises Circum. direction 60 40 20 Compression Axial direction 0 -20 -40 0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 4 D is ta n c e fro m c e n te r (m ) By Makida Design of Coil supports (by K. Tanaka) DZ DR Axial dir. De-centering force (Unbalance force) Coil Phi dir. Iron Coil supports 8000 R ad ial d ir. Static loads - Cold mass: 78 tons - De-centering force: 380 tons (Axial) (Unbalance force) 130 tons (Radi) Rough estimation; F60mm, 6x2 rods(Phi), 14 rods(Axial) - Thermal load: 5 Watt - Thermal shrinkage: 40mm(Axial) 20x10e-6/℃ 20mm(Phi) D e-cen terin g fo rce(kN ) 7000 Axial d ir. 6000 5000 4000 3000 2000 1000 0 0 5 10 15 20 25 30 35 40 45 50 D e via tio n (m m ) Detail design is necessary. 5 Cryostat Assumption Weight of calorimater is supported on the inner vacuum wall. 2000tons Fixed 2000tons x0.3G Fixed Fixed t=100mm Fixed t=40mm(Outer vac. wall) t=60mm(Inner vac. wall) (End plate) 125MPa 118MPa<140MPa 9mm 9mm Material: Stainless steel Outer vac. Wall: 40mm Inner vac. Wall: 60mm End plates: 100mm 6 Assembly procedure Coil assembly process Winding Machine Reference: SDC Thin superconducting solenoid view graphs for the DOE review presentation Oct. 26-27, ‘92 7 Magnet assembly process Outer vac. vessel Reference: SDC Thin superconducting solenoid view graphs for the DOE review presentation Oct. 26-27, ‘92 8 鉄ヨークの設計について ケーブル ・磁場に対する設計 磁場均一度、漏れ磁場 → 鉄形状最適化 ・力に対する設計 自重、地震力、電磁力< 許容値 → 支持形状の検討 自 重 ・組み立て方法等 超伝導電磁石 磁場 電磁力 容易な据え付け及び精度の確保 ケーブル及び測定器のサポート メンテナンス ・コストの抑制 3T 地震 9 磁場に対する設計 Coil-L R4.0m Coil-M Coil-C io dz 4.25m Jcorr/Jmain Added! 0.4 0.4 0.4 3.6 3.6 3.6 0.5 0.5 0.5 CoilL CoilLeyinra eyinr Coil-L -Main Corr Ratio 0.18 0.47 0.75 4.43 3.43 1 1.5 0.18 0.47 0.75 4.43 3.43 1 1.3 0.18 0.47 0.75 4.43 3.43 1 1.4 0.4 3.6 0.5 0.18 dr io ithck dz 0.47 0.75 4.43 3.93 0.5 2.0 Bmin Bmax Bc Unif 2.970 2.993 3.035 2.998 3.040 3.067 2.976 3.031 3.031 0.934 1.546 1.043 2.955 2.977 2.960 0.739 B Unif (%) 1 min B max 100 0.6 3.6 3.6 3.6 3.6 0.5 0.5 0.5 0.5 0.18 0.18 0.18 0.18 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 4.43 4.43 4.43 4.43 3.93 3.83 4.03 3.98 0.5 0.6 0.4 0.45 2.0 2.0 2.0 2.0 2.957 2.980 2.981 3.001 2.977 3.018 3.004 3.022 2.961 2.989 3.000 3.015 0.672 1.259 0.766 0.695 0.6 0.8 1 1.2 1.4 1.6 1.5 1.3 3.4 3.2 3 2.8 2.6 2.4 2.5 2.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.43 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.997 2.993 2.989 2.998 2.995 2.992 2.997 2.998 3.013 3.007 2.998 3.004 2.998 2.999 3.001 3.002 3.001 2.996 2.991 3.000 2.997 2.998 3.000 2.999 0.531 0.466 0.300 0.200 0.100 0.233 0.133 0.133 0.5 U n ifo rm ity (% ) 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.1 2.4 2.6 2.8 3.0 io (m ) 10 3.2 3.4 漏れ磁場 Magnetic field (t=50cm:4th,5th) 90 80 Air Gap L e a k a g e F ie ld (G a u s s ) 70 60 50 40 30 50cm 50cm 25cm 20 10 10m 0 0 10 20 30 40 50 60 70 80 90 100 A ir G a p (m m ) 0.1 1 Uniformity (mm) M a g n e tic F ie ld (T ) Magnetic field along the beam axis. 0 .1 0 .0 1 磁場均一度 < 2mm 0 -0.1 R=0.4m R=0.6m R=0.8m R=1.0m R=1.2m R=1.4m R=1.6m R=1.8m R=2.0m R=2.05m -0.2 -0.3 -0.4 -0.5 1 E -3 -0.6 0 1 E -4 0 5 10 15 20 25 D is ta n c e fro m c e n te r(m ) 30 0.5 1 1.5 2 2.5 Distance from center (m) 11 構造解析 Self-weight 1.4mm 8250tons Support positions Seismic force 2.8mm Thickness= 5cm 0.3G Stress level is small enough. 12 Support plate Support plate: 75mm-thick 170MPa 2mm 13 14 Assembling procedures Dodecagon(12 gon) Transportation limit 3.2W x 12m Length Barrel Yoke Iron plates to be bolted on the support frame Support jig at each corners 15 End Yoke Iron plates (blue parts) are assembled by welding. Upper/Lower end yoke is ssembled by welding. Put them on the support stand 16 Experimental hall ・エレキ小屋? ・チムニー? ・冷凍機関係? Solenoid installation During maintenance Solenoid 17 Solenoid magnet Coil: 78tons Outer Vac. Wall(SUS, t40mm): 81tons Inner Vac. Wall(SUS, t60mm): 105tons Bulk heads: 25tons Other components: 4tons Total weight: 215tons End-Yoke(One quadrant) 1000tons 18 19 Way to open the end yokes Open the end yoke Steady state 12m Moving Maintenance position 20 Conclusion Shape Muon Uniformity(mm) Barrel End Width(Half) B.Yoke(tons) E.Yoke(tons) Total(tons) Leakage Field Octagon Dodecagon 10cm 5cm (-0.55) - 0 (-0.55) - (+0.05) 5 layers 9 layers 6 layers 11 layers 7.45m 8.025m 7900 8250 2000x2 4172x2 11900 16594 *90 gauss 43 gauss - Leakage field must be acceptable. - Difference between octagon and dodecagon is not so large. - Support configuration for the magnetic force should be considered. - Realistic end-yoke moving device should be designed. Solenoid Magnet Al support cylinder Cryostat t30mm 50cm 2 layers 4 layers - Detail design of the coil supports will be done. - Solenoid support configuration will be made. - Assembly/Installation plan should be considered. Coil Inner radius Outer radius Half length Weight(tons) Mean radius Half length Weight(tons) Central magnetic field # of turns(2 layers) Current density Nominal current Stored Energy 3.72m 4.4m 4.75m 191 4.0m 4.43m 78 3T 2880 741A/mm2 7956A 1.60GJ 21 今後の課題 (Solenoid magnet) - Cryostat design - O.rad: 4.4m x I.rad: 3.72m x Length: 9.5m - 40mm(Outer), 60mm(Inner), 100mm(End) Support configuration for Calorimeter (-0.55) - 0 3.72m 4.4m 4.75m 191 4.0m 4.43m 78 Central magnetic field # of turns(2 layers) Current density Nominal current Stored Energy 3T 2880 741A/mm2 7956A 1.60GJ 140 120 100 S tre s s (M P a ) - Coil design Superconductor: 6.5mm x 45mm Magnetic force on the coil: 130MPa max. Coil support design - Cold mass(78 tons) + Decentering force(380 tons) - Thermal shrinkage/Load (60mm dia., 6x2 rods in phi, 14 rods in Z.) Uniformity(mm) Cryostat Inner radius Outer radius Half length Weight(tons) Coil Mean radius Half length Weight(tons) 45mm - General design - Magnetic field: 3T - Size: 4m radiusx8.86m length - 2 layer (Main coil) + 4 layer (Correction coil) - Calorimeter: Inside of the solenoid - In-direct cooling 80 60 40 20 0 -20 -40 6.5mm 0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 D is ta n c e fro m c e n te r (m ) - Make engineering drawings. - Assembling procedure - Thermal design - Cryogenic design 22 4 .5 今後の課題(Iron Yoke) - Magnetic field design Optimization of yoke configuration in several conf. Boundary conditions - <2mm in TPC volume, <50 gauss at 10m from I.P. - Detector region: R3.5m, Z= 4.25m - Mechanical design Stress/deformation against; - Magnetic force: 18400 tons - Self-weight: 8250 tons(B.Y) - Seismic force: 0.3G in the horizontal direction Precise calculations are necessary. Detail design of support structure - Make engineering drawings of; Iron yoke, Barrel yoke, End yoke - Assembling procedure Barrel yoke, End yoke - Experimental hall (Not fixed!) - Layout - E.Y. moving mechanism Detail design is necessary. 23 おわり 24 磁場に対する設計 鉄の飽和と均一度の改善 ・超伝導電磁石 - 中心磁場: 3T - 半径:4m - 全長:~9m B I 要求 - 磁場均一度:< 2mm - 漏れ磁場@10m from I.P. < 50gauss ⇒ 鉄形状の最適化 B I Z1 Z2 R2 超伝導電磁石 Z1、R1を最小化 Z2、R2を最適化 R1 均一度:<2mm 25 Octagon Dodecagon Shape Muon Uniformity(mm) Barrel End Width(Half) B.Yoke(tons) E.Yoke(tons) Total(tons) Leakage Field Octagon Dodecagon 10cm 5cm (-0.55) - 0 (-0.55) - (+0.05) 5 layers 9 layers 6 layers 10 layers 7.45m 8.025m 7900 8250 2000x2 4172x2 11900 16594 *90 gauss 43 gauss 26 (a) 500mm-thick iron M a g n e tic F ie ld (T ) Leakage field: <50 gauss at 10m from I.P. C : N e w O p tio n 1 A c o n f. B c o n f. 0 .1 (b) 250mm-thick iron 0 .0 1 1 E -3 1 E -4 0 5 10 15 20 25 30 D is ta n c e fro m c e n te r(m ) Option (a) Muon 10cm Barrel 5 layers End 6 layers Width(Half) 7.75m Uniformity(mm) (-0.9) - (-0.15) Leakage Field 56 gauss (b) 5cm 9 layers 11 layers 8.00m (-0.5) - (+0.) 43 gauss (c) 5cm 7 layers 9 layers 8.15m (-1.9) - (-0.45) 40 gauss (c) 500+250mm-thick iron 27