Transcript Ti:Sa
14pYc-7 2004 JPS fall 超弱励起による原子平坦面をもつ 量子井戸の発光スペクトル Ji-Won Oh,Masahiro Yoshita,Hidefumi Akiyama, Loren PfeifferA, Ken WestA Institute for solid state physics, University of Tokyo,and CREST, JST Bell Laboratories, Lucent Technologies, USA.A Outline • Introduction: Novel fabrication method for atomically smooth (110) surface: why (110) surface? • Experimental method using Micro-PL spectroscopy • PL profiles of ideal 2-D quantum well system under very weak excitation power and liquid He temp.: Linewidth of photoluminescence by curve fitting Why (110) GaAs surface is so important for us ? Schematics of the cleaved-edge overgrowth method with molecular beam epitaxy Schematic of a T-shaped quantum-wire structure which consists of a 14-nm-thick (001) QW (stem well) and a 6-nm-thick (110) QW (arm well). Percentages show Al-contents (x) in AlxGa1.xAs layers. Introduction: Novel fabrication of atomically flat GaAs (110) surface using growth-interrupt annealing and cleaved-edge overgrowth Annealed surface 600 ℃ 10 min Novel growth-interrupt annealing technique with a cleaved-edge overgrowth (CEO) method in MBE growth:Atomically flat (110) GaAs quantum well [1] M. Yoshita , H. Akiyama, L. N. Pfeiffer, K. W. West Jpn. J. Appl. Phys. 40, L252-254 (2001). [2] M. Yoshita, H. Akiyama, L. N. Pfeiffer, K. W. West, Appl. Phys. Lett. 81, 49-51 (2002) 5X5 mm Purpose of experiment PL spectroscopy of quantum well with atomically flat interface ( ideal 2-D electron-hole system) under very weak point excitation power and 4 K. . Ideal 2-D electron-hole system: minimizing the following factors ! Atomically smooth interface→ exciton scattering by surface fluctuation↓ Liquid-He temperature (4K) → phonon scattering ↓ Very low excitation power (1 x 103 carrier/cm2) → exciton-excition scattering ↓ Quantum well structure with atomically smooth interface and excitation positioning by Micro-PL Selected atomically smooth Interface region by micro-PL image Position Sample structure Excitation positioning by micro PL imaging Cross-sectional image of quantum well [3] J. W. Oh, M. Yoshita , H. Akiyama, L. N. Pfeiffer, K. W. West, Appl. Phys. Lett. 82, 1709-1711,2003. 4] J. W. Oh, M. Yoshita , H. Akiyama, L. N. Pfeiffer, K. W. West, J. Appl. Phys. To be published. Micro-PL spectroscopy with point excitation PL 4k Liquid He Objective lens: x 40, N.A. 0.4 Experimental parameter: Excitation source: He-Ne: 630 nm =1.967 (eV) Ti:Sa: 730 nm =1.698 (eV) Atomically flat region in a quantum well 6 nm (30ML) Carrier density 6.8 mm Ti:Sa : 6e+02 ~ 1.8e+12 ( excitons/cm2) He-Ne : 6e+02 ~ 4e+10 (estimated) Exposure Time: 10-2 ~ 3600 sec (1hr) Multi-peaks under at various intensity He-Ne Ti:Sa Peak 1 Peak 2 1.8e+12 ( = 1.7 ×10 5 W / cm2 ) 5.8e+11 1.8e+11 5.8e+10 ( 1.6 x 10 3 W/cm2) = 1.8e+10 5.8e+09 1.8e+09 5.8e+08 PL intensity (Arb. Units) 1.8e+08 Single peak 5.8e+07 1.8e+07 5.8e+06 1.8e+06 5.8e+05 1.8e+05 5.8e+04 ( = 5.3× 10 –3 W / cm 2 ) 2.9e+04 5.8e+03 Single peak 3e+03 (7.8X10-5 W/cm2)= 6e+02 1.57 1.58 1.59 1.60 1.57 1.58 1.59 1.60 ( Excitons / cm2 ) PL spectra at low excitation intensity and GL ( line-width of peaks) by curve fitting Ti:Sa Peak 1 Ti:Sa Peak 2 Ti:Sa He-Ne Peak 1 He-Ne Peak 2 He-Ne 1100 120 1000 PL intensity (Arb. units) PL intensity (Arb. units) 1200 900 800 700 600 500 400 300 200 100 80 60 40 20 100 0 1.575 1.580 1.585 1.590 1.595 Photon Energy (eV) Fitting curve of peak 1 Fitting curve of peak 2 0 1.575 1.580 1.585 1.590 1.595 Photon Energy (eV) GL = GG (Gaussian full widths at half maximum (FWHM) ) Peak positions and GL ( line-width of peaks) GL = Linewidth of peak 1 &2 Pos.eV = Peak positions in eV Ti:Sa Peak 1 Ti:Sa Peak 2 Pos.eV He-Ne Peak 1 He-Ne Peak 2 1.5880 2.4 1.5875 2.2 1.5870 2.0 1.5865 1.8 1.5860 1.6 1.5855 1.4 1.5850 6 8 10 3 2 4 6 8 10 4 2 4 6 8 10 1.2 5 meV GL 6 8 10 excitons / cm2 GL of Peak 1 GL of Peak 1 3 2 4 6 8 10 4 excitons / cm2 1.5 meV * 1.6 meV * 2 4 6 8 10 5 * :at single peaks This study 6 nm (110) GaAs QW Other works 6 nm (001) GaAs QW Exciton linewidth Experimental condition ~1.6 meV Ti:Sa W/cm2 4K Notes: Comparison of experimental results with previous works Al0.33Ga0.67As barrier ~1.5 meV He-Ne W/cm2 4K 1.6 meV Ti:Sa (0.2 W /cm2) 8K Al0.3Ga0.67As barrier [5] 1.6 - 2.0 meV Ti:Sa or Ar+ (1-104 W /cm2) 6K AlAs barrier [6] This study [5] V. Srinivas, et al. Phys. Rev. B. 46, 16 (1992) [6] D. Katzer et al. J.Vac.Sci.Tech.B 10(2), 800 (1992) Calculation for Width fluctuation 0.03 nm (1.06 ML) 60 Considering the reason for broad linewidth at (110) GaAs QW Broadening mechanism Possibilities 1. Lifetime broadening r ( lifetime ) 300 ps E r 14 m eV 2. Phonon scattering ・・・・small at 4K × × 3. Interface roughness: ① monolayer fluctuation ② intermixing / segregation during MBE growth 4. Alloy scattering ・・・・small GaAs well / AlGaAs barrier 5. Barrier concentration fluctuation 6. Impurities scattering: 7. Surface charge ① surface bulit-in potential・・・active layer to surface : only 20 nm ② inhomogeneous field distribution・・・charged impurities on sample surface by exposing it to the air × △ △ × △ △ Description of experiment ・PL on atomically flat (110) interface in GaAs/GaAlAs QW under various excitation powers via microscopic PL ・ Exciton peak (Ti:Sa & He-Ne): GL ~ 1.5~1.6 meV Future works ・elucidating the origin for broad linewidth ・fabricating quantum wells with narrower linewidth 9 10 10 11 10 10 6 10 9 5 10 8 10 7 4 10 6 10 5 10 4 10 3 10 2 8 10 Exp_Time_HeNe_warutime Exposure_Time_counts_warutime Exciton_cm2_TiSa 7 10 Photon Counts / time 10 10 10 3 2 12 Excitons / cm 10 10 2 10 1 10 0 10 0 10 10 1 10 2 10 3 10 4 10 5 10 6 7 10 8 10 Photon Incident / cm 9 10 10 10 10 11 10 12 10 13 2 Estimating carrier density by comparing integrated PL Q&A • • • • • • • • • 野村晋太郎: He-Ne とTi:Sa両方で励起した理由は? Answer: バリアー層での吸収がある励起波長を用いたかったが、同じ励起強度下で は発光量の差はほとんど無かった。 He-Neのバリアー吸収はわずかであると考えら れる。 松田一成: 活性層から表面まで距離は?表面との距離をどの位離せば 表面効果によるbroadeningは無くなると思うのか? Answer: バリアー層が10nmでキャップ層が10nmでトータル20nm程度である。どの くらい離せばいいのかはわからないが、ピークシフトがないサンプルは0.2mmほど AlGaAsバリアーを積んで、離している。 松田さんの経験からすると40nm以上じゃないと表面効果が出る。 中山正昭: 表面効果が均一に利いてくるとピークがシフトするだけである。効果に斑が ある場合のみ、広がりに対して利くのでは?低エネルギー側のピーク2の正体は何 か? Answer:Charged excitonもしくはexciton分子だと考えられますが、正体は はっきりしない、時間分解測定をすれば一発でわかると思う。ちなみに励起強度に対 するピークの積分面積はべき乗の関係であった。 1000 100 10 1 1.575 1.580 1.585 1.590 Ti:Sa PL curve fitting by Gaussian Model 1.595 atomically smooth (110) interface evolved in b-5b at the ends of sample Two atomically smooth region with very weak excitation power Measuring PL spectra upon varying Excitation power using CCD with 1200 grating by point excitation with the long exposure times 350 mm: PL spectra 4450 mm PL inten/ time 1000 (Arb. units) 100 10 10 9 10 7 10 5 10 3 10 1 10 (Arb. units) 1 1.575 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10 1.580 1.585 1.590 10 9 10 7 10 5 10 3 10 1 10 3 10 5 10 7 10 9 Excitation Density ( W/ mm2) 10 10 1.595 -1 10 -1 11 -1 10 3 10 5 10 7 10 9 10 11 Exciton density ( num./ cm2) 5 8 11 2 10 10 Photons / cm 10 14 Reference series : 300 grating at 250 mm Comparison with previous results backgrounds noises defending exposure time. 205 20 min (0.5 nW) 10 min (0.92 nW) 5 min (3.2 nW) 3 min (6.7 nW) 2min ( 20.3 nW) 200 78 mW 195 24 mW 190 10.8 mW 3.1 mW 960 nW 185 280 nW 180 90 nW 22 nW 175 170 6.32 nW 2 nW 165 1.555 0.72 nW 0.2 nW 0.05 nW 1.560 1.565 1.570 1.575 1.580 1.585 1.590 1.595 1.600 1.605