Transcript Document
スピンエコーの手法を利用し たフランシウム原子EDMの探 索 全般的な実験の概要 co-magnetometer beamの低速化 独立行政法人理化学研究所 旭応用原子核物理研究室 長谷山智仁 Atomic EDM 2 types of atomic EDM paramagnetic atom ← electron EDM diamagnetic atom ← nuclear Schiff moment ← quark chromo-EDM and θQCD e EDM Enhancement factor: dA /de ~ O (Z3α2) inner core region : relativistic motion a strong mixing between opposite-parity states PRA50,2960(1994) e EDM の現状と基本相互作用 現在の上限値: |de| < 1.6×10-27 ecm Berkeley group 205Tl ground state 6 2 P1/2 ( F=1) PRL88,071805(2002) Tl: enhancement factor –585 (Z=81) PRA50,2960(1994) Direction of Electric Field in beam experiment 205Tl-exp. : E⊥v requirement: counter-propagating beams v×E rotation E // v preferable voltage accumulation E // v difficult to apply PRL88,071805(2002) 対向電場とEDMスピン歳差の積 算 HV F v Atom E B π-flip GND 電極通過毎にスピンを静磁場で180度回転し 対向電場中でEDMスピン歳差が積算 F exact matching EDM precession π-flip Accumulative EDM precessions mismatching in Canceli ng Voltages GOOD alternating π-flips BAD one-way π-flips longitudinal view Longitudinal E-field 静磁場の回転角は速度分散を持つが 磁場方向も対向させることにより 累積性は保たれる(スピンエコーの手法) Advantages to use 220Fr The heaviest alkali atom, Z=87 Large enhancement from e EDM dFr /de ~ 1×103 F=1/2 hyperfine structure valence electron 7s1/2 + nuclear spin I=1 d A E μA B spin precession ω F Sufficiently long lifetime τ=39.2 sec (T1/2 =27.2sec) RIBF production rate > 5×106 /sec Total design of RIABR Dipole Magnet, RF cavity Electrodes Neutralization area Glass nozzle RI Stopping chamber Yttrium Spin Selection (1st) Hexapole Magnet Detect or (QMS) Spin Selection (2nd) Quadrupole Magnet production: slow neutral RI beam applicable to Francium for other experiments requiring high nuclear polarization Polarize+Analyze Francium D1 line: transition between 7s1/2 and 7p1/2 states (λ= 817nm) Optical Pumping F=1/2 10s 9s 8p 3/2 8p 1/2 -10000 -15000 8d 5/2 8d 3/2 7d 5/2 7d 3/2 6f 5f 7p 1/2 7p 3/2 -20000 +3/2 +1/2 -1/2 -3/2 F=3/2 8s 6d 5/2 6d 3/2 -1/2 +1/2 D1 line λ=817nm 7p 1/2 -25000 D2: 718nm -30000 -35000 mF -1/2 +1/2 F=1/2 D1: 817nm 7s unpol. 9p 3/2 9p 1/2 + -5000 σ Energy level[cm -1] 0 Francium Calculated by Dzuba et al. Phys.Lett.A95,230(1983) 7s 1/2 F=3/2 220 ionization energy 4.07eV (2nd smallest of all the atoms) Rn-like closed shell + 1 valence electron +3/2 +1/2 -1/2 -3/2 Fr 7s1/2 F=1/2 states mF = +1/2 : stable mF = -1/2 : unstable → fluorescence D2 line: used for atomic cooling Slow Alkali Beams Longer time for EDM precession Zeeman technique Na Na saturation intensity (Fr D2-line) I0 PRA55,605(1997) ω 2.67 mW/cm 2 12π c 3 0 2 2-D Optical Molasses to reduce transverse momentum Doppler Limit 8.3cm/s 6Li co-magnetometer Stable alkali with nuclear spin I=1 thermal atomic beam: available similar configuration of angular momentum Atomic magnetic moment: close to 220Fr relative difference: O(10-3) Negligible EDM dLi /dFr ~ 4×10-6 trajectory combination onto 220Fr-path thermal Li-beam source Ext.Cav. Diode Laser system 実験装置図 Deceleration of 6Li beam with Zeeman compensation technique thermal 6Li atomic beam low-velocity component: too tiny a portion…. V el oci ty Di s ti buti on 7.0E-4 300℃ 400℃ 5.0E-4 500℃ 6.0E-4 4.0E-4 3.0E-4 2.0E-4 Deceleration is Required! Head-on collisions with photons a deceleration with a single laser 1.0E-4 Velocity[m/s] 0.0E+0 0 500 1000 1500 2000 Basic concept of the deceleration resonance with applied magnetic field atoms entering with high velocity cancellation Doppler shift ⇔ Zeeman shift atoms entering with low velocity position 2500 3000 Momentum transfer with photon 1-photon momentum 1.848eV/c 0.099m/s Laser absorption Fluorescence (random direction) Atomic momentum 6 Li atom recoil on induced emission laser beam Fluorescent recoil Radiative lifetime (2p3/2) 26.9ns Momentum : 1.87×104eV/c Doppler shift : 1.49GHz Compensating field : 0.1065T (for v=1000m/s) successive scatterings of ~104 photons cycling transition for deceleration D2 line (2s1/2→ 2p3/2) 671.0nm (446.8THz, 1.848eV) (F, F’) = (3/2, 5/2) circular polarization Although hyperfine transitions, (F, F’) = (3/2, *) are irresolvable, circular polarization allows only (3/2, 5/2) for successive transitions. 6Li Deceleration Rate (Zeeman shift included) Light absorption and scattering rate p s0 / 2 1 s0 [2( D ) / ]2 FWHM Γ 1 s0 : laser detuning from resonance D : Doppler shift 2 π 5.92MHz (equiv. 3.97m/s capture limit) ω30 s0 I I s , I s 2.56 mW/cm 2 2 12 π c 220Fr power-broadened line width 7.57MHz, 5.44m/s 2.67mW/cm2 4 10 7 maximum deceleration (s0→∞) 0 2 1.84 106 m s 2Mc 220Fr 6.01×104m/s2 field, gradient and laser power 2 2 2 dB amax s0 0 2.085 10 T /m s0 B 1 dB dz 1 s0 B c B dz This condition should NOT be satisfied at the exit. z fact 1 fact 3 fact 10 fact 30 -1 Photon Scattering Rate[s ] amax sat. sat. sat. sat. -2 B = 5.33 x 10 T 220Fr 3 10 7 2 10 7 1 10 7 1 5.952×10-4 T2 / m 0 480 490 500 velocity [m/s] 510 520 magnet inhomogeneous solenoids 6Li beam exit 6Li beam entrance MAX 0.12T Profile coil: field gradient Bias coil: uniform shift Extraction coils: sudden drop MAX 0.01T MAX 0.02T Example of parameter setting 929m/s→ 200m/s additional slowering as required 6 Li atom Laser まとめ フランシウム原子のEDM測定 v×E systematicsを無くす為、縦方向電場での測定をする。 スピンエコーの手法による対向電場中でのスピン歳差角の蓄積。 低速中性Fr原子ビームの生成、ゼーマン減速法による低速化、 Optical pumpingとfluorescence測定によるスピン歳差角の測定、 6Li co-magnetometerの使用……..。 6Li原子ビームの低速化装置の設計・製作