Transcript 10 20 [cm
13aXD-14 希薄磁性半導体CdMnTeにおける強励起効果 High excitation effects in dilute magnetic semiconductor CdMnTe 橋本佑介A,B 三野弘文A、山室智文A、蒲原俊樹A、神原大蔵A、松末俊夫B Jigang WangC、Chanjuan SunC、河野淳一郎C、嶽山正二郎D 千葉大院自然A、千葉大工B、ライス大ECEC、東大物研D Y. HashimotoA,B H. MinoA, T. YamamuroA, T. KamoharaA, D. KanbaraA, T. MatsusueB, J. WangC, C. SunC, J. KonoC, S. TakeyamaD Graduate School of Science and Technology, Chiba Univ.A 、 Department of Engineering, Chiba Univ.B, ECE Dept., Rice Univ.C 、 ISSP, Univ. of TokyoD Magnetic Polarons Free Exciton Magnetic Polaron (FEMP) h e Mn spin Exciton spin A Golnic, et. al. J. Phys. C16, 6073 (1983) M. Umehara, Phys. Rev. B 68, 193202 (2003) Localization only by sp-d exchange interaction Photo-induced ferromagnetism via the FEMP Localization energy Free exciton magnetic polaron (FEMP) in CdMnTe Localization energy of Magnetic Polaron Alloy Potential fluctuation Current work : High quality CdMnTe sample with low Mn concentration 5 10 Mn Concentration [%] S. Takeyama, J. of Crys. Growth, 184-185 (1998) 917-920 x = 5 ~ 10% → FEMP energy : Large Alloy potential fluctuation : Small He-Ne laser 76 MHz Ti:Sapphire laser 250 kHz OPA laser 1 kHz OPA laser Exciton density 1012 – 1020 [cm-3] CW and Time-resolved Photoluminescence Free Exciton Magnetic Polarons FEMP Bipolaron Ferromagnetic Phase Transition via Free Exciton Magnetic Polarons ? Experimental Setup for PL measurements Bulk Cd1-xMnxTe x = 5% Laser Cd0.95Mn0.05Te Cd1-yMgyTe CCD or Streak camera GaAs Spectrometer Sample 1.4 K Lasers Excitation intensity: 1mW, Focus size: 200mm, O.D. 1 Laser Exciton density [/cm3] rs Wavelength He-Ne 2.2 x 1013 33 634 nm Ti: Sapphire 2.8 x 1015 6.6 400 nm 250KHz OPA 8.6 x 1017 1 700 nm 1KHz OPA 2.2 x 1020 0.15 634 nm He-Ne n rs 1012 100 Ti: Sapphire 250 kHz OPA 1 kHz OPA 1015 1016 1017 1018 1019 1020 0.1 1 2 10 aB = 6.7 nm nMott = 7.9 x 1017 [cm-3] 1013 1014 Low Excitation Limit Exciton Density 1012 - 1014 [cm-3] 1017 1016 Ti: S 1015 1014 1012 PL Absorption: 4.2 K, PL: 1.4K PL Light source:He-Ne 633nm FEMP BMP FX BX BMP' He-Ne 1013 Absorption 1018 Absorption Photoluminescence 1019 1 kHz OPA 250 kHz OPA 1020 1.650 1.660 1.670 1.680 Photon energy [eV] Distinct PL line of the FEMP appear !! FEMP binding energy 1.8 meV Photoluminescence Exciton Density 1015 – 1016 [cm-3] 1018 1017 1016 1014 1012 BX FX 10 16 10 FEMP 1.668 He-Ne 1013 15 Ti:S 1015 Exciton density 1015, 1016[cm-3] PL intensity 1019 Excitation intensity normalized PL 1 kHz OPA 250 kHz OPA 1020 1.676 1.672 Photon energy [eV] FEMP PL intensity: Saturate FX PL intensity: Increase Time Resolved Photoluminescence Exciton Density 8.6 x 1017 cm-3 1018 1017 1016 Ti: S 1015 He-Ne 1012 EHP B BX A 0 100 200 300 1014 1013 1.674eV 1.667eV Time [ps] 1019 1 kHz OPA 250 kHz OPA 1020 400 1.66 1.67 1.68 Photon energy [eV] Time Resolved Photoluminescence Exciton Density 8.6 x 1017 cm-3 1017 1016 He-Ne 1012 A 2 10 6 4 2 1 0 200 400 600 800 Time Delay [ps] 1000 1.64 1.66 1.68 1.70 Photon energy [eV] Inverse Boltzman 1014 1013 t = 40 - 140 ps 6 4 Ti: S 1015 6 4 PL intensity 1018 A (1.6768 ~ 1.6723 eV) B (1.6611 ~ 1.6656 eV) 100 PL intensity 1019 1 kHz OPA 250 kHz OPA 1020 A: 1.674 eV t ~ 150 ps Biexciton B: 1.667 eV t < 30 ps ? Many Body Effect of FEMPs Bi-polaron Coupled two FEMPs has been expected to be more stable than single FEMP Bi-exciton Photoluminescence Exciton Density > Mott Density 1018 1017 1016 1014 1012 3.3I 1.62 2I 1.64 I 1.66 1.68 Photon energy [eV] He-Ne 1013 I = 5.6 × 1018 [cm-3] EHP Biexciton Ti: S 1015 12 K Photoluminescence 1019 1 kHz OPA 250 kHz OPA 1020 Electron hole plasma I4.2 Biexciton I1.6 Exciton Density Dependence of Origin of Photoluminescence FEMP 1019 1018 1017 1016 Ti: S 1015 1 kHz OPA 250 kHz OPA 1020 1014 1012 He-Ne 1013 Biexciton Electron hole Plasma Summary PL measurements Exciton density: 1012 – 1020 [cm-3] FEMP Biexciton Electron hole plasma Future work Spin Dynamics Under Strong Excitation Free Exciton Magnetic Polaron Mn spin Electron Hole 14.4Å Hole mass: Electron mass: mh 64Å 0 . 81 me me 0 . 096 me N 0 220 meV N 0 880 meV The number of Mn ion electron: 481 hole: ~5.5 Exciton Density Dependence 1017 1016 Ti: S 1015 1014 1012 He-Ne 1013 0 0.1 1 10 100 Exciton density (× 10 ) [cm-3] 16 FEMP binding energy [meV] 1018 Excitation intensity normalized FEMP PL int. Normarized FEMP PL Int. 1019 1 kHz OPA 250 kHz OPA 1020 FEMP binding energy 1.5 1.0 0.5 0.0 0.1 1 10 100 1000 16 Exciton density (× 10 ) [cm-3] When the exciton density is above 1018 cm-3 FEMP may disappear Spin Relaxation Dynamics n ~ 4 10 [ cm 16 1020 1018 T/T 1019 10x10 1017 3 ] -3 5K 8 6 4 2 0 0 10 20 Time delay [ps] 1016 n ~ 4 10 [ cm 17 3 n ~ 1 10 [ cm 18 ] 3 ] 1015 1013 -4x10 1012 T/T 1014 T/T 4 0 -3 0 -4 -8x10 0 10 20 Time delay [ps] -3 0 10 20 Time delay [ps] Time Resolved Photoluminescence 1018 1017 1016 Ti: S 1015 1014 1012 He-Ne 1013 1.4K 250 kHz OPA laser 76 MHz OPA laser 0 0 Time [ps] 1019 1 kHz OPA 250 kHz OPA 1020 100 100 200 200 300 300 1.4K 400 1.66 1.67 1.68 Photon energy [eV] 1.665 1.670 1.675 1.680 1.685 1.690 Experimental Setup for PL measurements Sample 13 K 1kHz OPA&CPA chopper He-Ne Movable mirror Lock-in Amplifier Photodiode Spectrometer PL peak position [eV] Discussions 1.665 1.660 1.655 1.650 1.645 0 5 10 15 18 -3 Exciton density ( x 10 ) [cm ] -15 Mott transition 80 EHP Exciton PL intensity 100x10 60 40 20 00 0 5 10 15 -3 18 Exciton density ( x 10 ) [cm ] Normarized PL intensity Excitation Dependence of the PL Intensity Excited with Ti:Sapphire Laser 2 10 1.0 I 4 2 1 I 1.28 I FEMP FX 4 2 6 2 0.1 1.04 3 4 56 16 1 Exciton density (× 10 ) [cm-3] 2X Peak position [eV] BX X FEMP Binding Energy [meV] Absorption 1.6748 Biexciton 1.6741 0.7 FEMP 1.6722 2.6 E FEMP 2 . 8 meV G E BX E FEMP 1meV E BX 3 . 8 meV 3 . 3 meV Estimate by the EBX (4.1 meV) on CdSe Purpose BX 2X t BX 1 / n X 2 t FEMP ~ 10 ps FEMP G