Transcript Document
重い不安定核における集団運動 山上 雅之 (理化学研究所) トピックス 新しい独立粒子運動 集団運動の質的変化:超流動、低励起振動状態 中性子過剰Ni同位体(球形核) 中性子過剰Mg同位体(変形核) 集団運動 -多彩な“形”の物理原子核 ⇒ 様々な“形”が出現する最小の量子多体系 粒子密度の変形(実空間回転対称性の破れ) エキゾチック変形(非軸対称8重極変形)!? 4重極変形 プロレート オブレート Refs. S.Takami, K.Yabana, and M.Matsuo: Phys. Lett. B431, 242 (1998) M.Y., K.Matsuyanagi, and M.Matsuo, Nucl. Phys. A693, 579 (2001) 超流動性(ゲージ空間・実空間回転対称性の破れ) 対称性の破れと集団モードの発生 V • 自発的対称性の破れ(β、Δ)を回復する 集団モード(回転、対回転) • 様々な振動モード(形、対振動) (各モードのエネルギースケール、モード結合) vibration , zero-freq. mode Gammasphere: www-gam.lbl.gov Motivation 理研RIBF 軽い不安定核 重い不安定核 A , N / Z large どのような新しい物理の可能性が拓けるか? 重い不安定核における新しい集団運動の物理 に焦点を当てる。 キーワード:弱束縛、連続状態、対相関 Pairing correlation in borromean nucleus 11Li Two-particle density in 11Li n 9Li 12 n K.Hagino, H.Sagawa, Phys.Rev. C 72, 044321 (2005) Soft E1 excitation New data: T. Nakamura, et al., Phys. Rev. Lett. 96, 252502 (2006) B E 1 1.42 18 e fm , E rel 3 M eV 2 2 14 12 48 18 degree cf. 12 no correlation 90 degree Appreciable two neutron spatial correlation Di-neutron correlation is implied. NN force and di-neutron formation D.M.Brink, R.A.Broglia, Nuclear Superfluidity, Cambridge University Press, 2005 / 0 Questions In heavy n-rich nuclei with many weakly-bound neutrons, • Formation of multi di-neutrons and their condensation? • Collective excitations? A large “Core” 11Li ?? Pairing correlation in weakly-bound nuclei Pair scattering into continuum states Break down of BCS approximation F u k E , r BCS u k r k r HF vk E , r vk k r HF k F erm i p a ir • Pairing correlation dose NOT change the spatial structure. • Neutron gas problem r v k HF k , r k 0 k HF 2 dn v HF , r 2 0 ex p k r / r HF sin kr lj / r J.Dobaczewski, H.Flocard, J.Treiner, Nucl. Phys. A422, 103 (1984) di v . Coordinate space Hartree-Fock-Bogoliubov theory Tˆ V H F r r r Tˆ V H F uk E , r uk E , r E r vk E , r vk E , r A. Bulgac, FT-194-1980, CIP-IPNE, Bucharest Romania, 1980 (nucl-th/9907088) J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A422, 103 (1984) Asymptotic behavior at infinity ˆ E,r E u E,r Tu k k ˆ E,r E v E,r Tv k k D eterm ined by E Pairing correlation changes the spatial structure u k E , r , v k E , r Different asymptotic behavior Quasiparticle states in weakly-bound nuclei u E k , r sin k r k / r F erm i E k e . g ., 3 s1 / 2 state at v ( r ) v E k , r exp k r / r HF -0.5 M eV 2 No neutron gas u ( r ) 2 HFB HF+BCS HFB HF+BCS VHF r r Pairing anti-halo effect l 0 K. Bennaceur, et al., Phys. Lett. 496B, 154 (2000) New features of collective excitations In weakly-bound superfluid nuclei,... New type independent particle motions Novel features? Collective excitations Coherent motions involving many two-quasiparticle states First 2+ states in neutron rich Ni isotopes Comparison (Skyrme SLy4) • HFB + QRPA • HF-resonant BCS + QRPA • HF + RPA Ref. M.Y. Phys. Rev. C72, 064308 (2005) High-l non-resonant continuum states 2 r r , r 10 fm 3 2 corr , n 1 2 h11/2 res. (l=5) HFB Vpair fixed High-l continuum states z = 0 plane Spatial localization of correlated pair (di-neutron picture) l 1/ 2 r r2 12 2 1 12 Ref. M.Matsuo, et. al., Phys. Rev. C 71, 064326 (2005) z-axis 1 r r1 4 Role of high-l continuum lmax → larger Steeper slope E pair fixed l m a x 10 V pair 555 M e V fm -3 lm ax 5 V pair 755 M e V fm -3 Neutron rich Mg isotopes Collaborators • K. Matsuyanagi (Kyoto) • K. Yoshida (Kyoto) Deformed multi-weakly-bound nucleon system 40Mg region N=28 X 44S X Z=12 X X 42Si N=28 HFB (Gogny DIS) 36Mg 38Mg 40Mg R.Rodriguez-Guzman, J.L.Egido, L.M.Robledo Phys. Rev. C65, 024304 (2002) X Z=12 HFB (Skyrme SIII) X X J.Terasaki, H.Flocard, P.-H.Heenen, P.Bonche Nucl.Phys. A621, 706 (1997) Ingredients taken into account in this calculation HFB, QRPA calculation simultaneously taking into account Continuum Deformation Pairing Directly solve HFB eq. in coordinatespace mesh-representation 0 z H.O. basis X Spatially extended structure Neutron two-body correlation density in 40Mg External region High-W states are required for convergence r 1 2 r 0 Reference neutron Indication of spatial localization of the correlated pair (di-neutron picture) Di-neutron correlation in 36,38Mg Quadrupole vibrations in n-rich Mg isotopes (1W.u.=6 - 8fm4) 2 0 .3 K K 0 2 Microscopic structure of the low-lying K=0+ mode [310]1/2 3.16% 5.86% [321]3/2 35.7% [202]3/2 [330]1/2 [330]1/2 32.2% [200]1/2 3.19% 1.07% [202]5/2 [202]3/2 Soft K=0+ mode in deformed nuclei Two-level model (Bohr and Mottelson) 1 | 0 a b 2 ( a | 1 1 b | 2 2 ) 2 1 | 0 ' a b 2 2 2 ( b | 1 1 a | 2 2 ) 1 Transition matrix element 0 ' | r Y 20 | 0 2 2 ab a b 2 2 | r Y 20 | 2 1 | r Y 20 | 1 2 2 2 opposite sign Enhancement Deformation of pairing field Two neutron pair transition strengths Monopole pairing P00 d r ( r , ) ( r , ) Quadrupole pairing P20 d r r Y 20 ( rˆ ) ( r , ) ( r , ) 2 More exotic soft K=0+ mode in 36Mg K 0 2 r Y20 0 gs 2 M , 20 , (e) Configurations , 2 M 20 fm (a) [310]1/2, [330]1/2 -2.11 (b) ([321]3/2)2 -1.61 (c) ([310]1/2)2 -1.58 (b) (d) ([330]1/2)2 -1.50 (d) (e) [301]1/2, [310]1/2 … -0.51 (c) (a) Violation of selection rule valid for H.O. like w.f. If [ N , n3 , ]W is good quantum number N 2 for non-zero transition matrix elements with r Y 20 2 Octupole vibrations Microscopic structure of the K=0- mode at β=0.3 2 0 .3 ~8 W.u. (intrinsic) | Qˆ 30 | 0 M 30 , [321]3/2 [202]3/2 Single 2qp excitation is dominant, but contribution of many 2qp excitations (1W.u.=60fm6) Enhancement of transition strength Microscopic structure of the K=0- mode atβ=0.55 2 0 .5 5 Strikingly enhanced transition strengths ~100 W.u. (intrinsic) | Qˆ 30 | 0 M 30 , Coherent coupling of many 2qp excitations Striking enhancement of transition strength (1W.u.=60fm6) Good indicator of large deformation Systematic features Soft octupole vib. associated with SD shell structure cf. Soft K=0- and 1- modes on SD state in 40Ca and 44Ti T.Inakura et al., NPA768(2006)61 Gamma vibration Excitation of protons Z=12 Coupling between pair fluctuation and beta vibration Soft K=0+ mode まとめ 中性子過剰Ni、Mg同位体を例に、重い不安定核での新しい物理の 可能性の“一端”を議論した。 Continuum Deformation Pairing •新しい独立粒子運動 •新しい超流動性(BCSからBEC(ダイニュートロン凝縮)の可能性) •低励起振動状態の質的変化(連続状態、対相関、対ポテンシャルの変形) 展望 • より系統的な計算(中性子過剰Si、S、Arなど、正負パリティ振動、回転運動) • 理論計算の精密化(変形Skyrme-QRPA、連続状態の取り扱い、など) 5-D quadrupole zero point energy corrections for 32Mg V q V q A verag e , GOA Hˆ coll g k q E k g k q Hˆ coll 2 2 q ij M i 1 q ij X q j V q V q g I 0 , V q q H q : C onstrained H FB V q : 5-D zero point energy corrections S.Peru, M.Girod, J.F.Berger, Eur.Phys.J. A 9, 35 (2000) 空間回転対称性の回復: 32Mgの場合 HFB I 0 X X X X X X R.Rodriguez-Guzman, J.L.Egido, L.M.Robledo, Nucl.Phys. A709, 201 (2002) q intrinsic 20 q I 0 20 概念図 intrinsic q 20 Intrinsic frameが上手く定義できない IM dq 20 f I q 20 IM ?? q 20 Generator Coordinate Method (GCM) 0 q 20 Angular correlation 2 3 4 2 corr , n r1 , r2 10 fm r1 1 , z1 0, 1 r2 2 , z 2 0, 2 z = 0 plane 2 z-axis (symmetry axis) 12 2 1 1 Our approach Ground state Coordinate-space HFB Mean-field Deformed Woods-Saxon potential Pair-field ~ V0 (r ) ~ h (r ) (1 ) (r ) 2 0 V 0 480 . 0 MeV fm 3 E cutoff 50 MeV max z max 10 (fm) 12.8 (fm) Excited states QRPA in matrix formulation Residual interaction p-h channel p-p channel v ph ( r , r ') [ t 0 (1 x o P ) v pp ( r , r ') V 0 (1 (r ) 0 t3 6 (1 x 3 P ) ( r )] ( r r ') ) ( r r ') Difference of K=0+ mode between 34Mg and 40Mg | Qˆ 20 | 0 M 20 , proton excitations B ( E 2 ) 21 . 1 e fm 2 2 excitation [110]1/2 [211]3/2 [101]3/2 [220]1/2 s: [330]1/2 [431]3/2 [321]3/2 [440]1/2 4 B ( E 2 ) 3 . 35 e fm 2 4 Spatial structure of 2qp excitations in 40Mg | Qˆ 20 | 0 Q 20 , ( , z ) d dzQ 20 , ( , z ) Qˆ 20 d r r Y 20 ( r , ) ( r , ) 2 Quadrupole1p-1h states in 86Ni Decoupling region Quadrupole 1p-1h states Quadrupole 1p-1h states No pairing 3s1/2 → d3/2 (res) 2d5/2 → d3/2 (res) 2d5/2 → g7/2 (res) Correlated region p h 5 M eV L L 0 R ph r F ph L F ph L ph r L dr dr r F r dr ph L R ph L F r dr ph 2 r 2 1/ 2 Quadrupole two-quasiparticle states in 86Ni Neutrons in 86Ni Increase of available configurations: p-h, p-p, h-h channels Correlations between s1/2, d3/2 and d5/2 states in spatially extended region Competition between the pairing anti-halo effect in the lower components and the broadening effect in the upper components Di-neutron correlation in medium mass region Extensive discussion for spherical nuclei (O, Ca, and Ni) M.Matsuo, K.Mizuyama, and Y.Serizawa, Phys. Rev. C 71, 064326 (2005) Two-body correlation density (spin anti-parallel) co rr , n r , r ' p a ir , n r , r ' l 7 2 Coordinate space HFB O High-l states → Spatial localization of the correlated pair θ l 1 / Di-neutron correlation becomes stronger as approaching the neutron drip line Deformations of neutron-rich Mg isotopes K.Yoneda et al., PLB499(2001)233 “Skyrme-HFB deformed nuclear mass table” M.Stoitsov et al.,PRC68(2003),054312 Gogny-HFB calculation using D1S R. Rodríguez-Guzmán et al., NPA709(2002)201 E ( 41 ) 1 E (2 ) 34Mg 2120 ( keV ) 3 .2 660 ( keV ) is well deformed. Convergence of two-body correlation density High-W states are required in nuclei close to the neutron drip line Spatial localization of the correlated pair (di-neutron picture) Size of neutron Cooper pair M.Matsuo, nucl-th/0512021 pair / d P / d P 2 0.2 F / F k F / m F BCS-BEC crossover in fermionic 40K atoms Experiment: Regal et al., 2004 Analytically solvable BCS-BEC crossover model BEC BCS BEC BCS B 0.6 [gau ss] 1/ k F a 1 Courtesy of M. Matsuo Schematic level schemes for 40Mg K B E 2; K 0 2 I i K 0 1 I f I i 020 | I f 0 2 M1 2 0 1 a I I 0 i i 1 I f I f 1 2 36Mg 周辺(変形した中性子過剰核) 24 HFB (Skyrme SIII): J.Terasaki, H.Flocard, P.-H.Heenen, P.Bonche, Nucl.Phys. A621, 706 (1997) F erm i 36 Mg RIKEN RIBF N=2Z Neutron drip line http://www.rarf.riken.go.jp/RIBF/nuclearchart-e.htm r-process pass Onset of weak binding in nuclear structure N 2Z F erm i S 2 n / 2 p a ir S 2 n [M eV] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, D. J. Dean, Phys. Rev. C 68, 054312 (2003) J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, nucl-th/0404077 Characteristic Pattern of Excited Spectrum 80Zr : Spherical + Y32 deformation (Td group) Rigid rotation… sequence of levels 0+, 3-, 4+, 6+, 7-, … with rotational energy relation E bg I E bg 0 b g I I 1 / 2J Octupole vibration… low-lying Jπ=3- state 68Se : Oblate + Y33 deformation (D3h group) Octupole vibration low-lying Jπ=3- state Kπ=0+ rotational band (associated with the ground state) 0+, 2+, 4+, … Kπ=3- rotational band (associated with the low-lying 3- state) 3-, 4-, 5-, … Ref. S. Takami, K. Yabana, M. Matsuo: Phys. Lett. B431 (1998) 242