Transcript J/ψ関連の話
1
J/y production in
Au+Au and Cu+Cu
Collisions at RHIC
Taku Gunji
CNS, University of Tokyo
Heavy Ion Café 2007/2/10
2
Outline
Physics Motivation
J/y in the medium
J/y measurement at SPS
J/y measurement at RHIC
d+Au collisions and cold matter effects
Au+Au and Cu+Cu collisions
Comparison to the theoretical models
Summary & Outlook
3
Physics Motivation
J/y suppression in QGP
due to the Debye Color Screening
T.Matsui & H. Satz PLB178 416 (1986)
Signature of de-confinement
Debye Color Screening
c
c
Color Screening
• Debye Radius < Rcc
No formation of c-cbar bound states
Suppression depends on temperature (density)
• Recent quenched lattice QCD calculations
• Melting temp. for J/y ~1.5-2.5Tc
• Melting temp. for cc,y’ ~1.1Tc
T. Hatsuda, M. Asakawa, PRL. 92 (2004) 012001
S. Datta, et al., PRD69 (2004) 094507
4
J/y = Thermometer of QGP
2 Key points
Feed down contribution from y’ and cc
• All J/y = ~0.6 J/y (direct) + ~0.3cc + ~ 0.1y’
• Fraction is not well-understood experimentally
TJ/y ~ 2Tc and Tc, Ty’ ~ 1.1Tc
Expected J/y (All)
Suppression Pattern
“Sequential Melting”
Temperature can be
deduced from magnitude
of suppression.
温度
5
J/y in the Medium
J/y production and evolution of the medium
All stage of collisions modify the J/y yield.
Initial stage
Nuclear
medium
Hot and dense
medium
Mixed Phase
Freeze out
• Gluon
Shadowing
• CGC
• Nuclear
Absorption
• Cronin effect
• Color screening
(Dissociation by
thermal gluons)
• cc coalescence
• Dissociation by
comovers
Cold Matter Effect
Final state Effect
6
J/y measurement at SPS
NA38([email protected] GeV)、NA50([email protected] GeV, [email protected])
e
L
abs
Nuclear Absorption
of J/y
L: effective path length of J/y
in nuclear target
Anomalous suppression
relative to nuclear Absorption
Pb+Pb
P
B
• Very promising to study J/y
production in A+A collisions at higher
collision energy.
• 10x √sNN at RHIC
• 2-3x gluon density at RHIC
7
PHENIX Experiment
PHENIX can measure J/y in wide rapidity range
Central Arms:
Hadrons, photons, electrons
J/y e+e|h|<0.35
Pe > 0.2 GeV/c
Df = p (2 arms x p/2)
Muon Arms:
Muons at forward rapidity
J/y m+m
1.2< |h| < 2.4
Pm > 2 GeV/c
Df = 2p
8
RHIC cold nuclear
matter effects (CNM)
9
J/y in d+Au collisions
Understand the cold matter effects
Gluon Shadowing
Nuclear absorption
Cronin effect (pT broadening)
rapidity y
Xd
J/y in
South
y<0
Xd
XAu
XAu
Coverage of XAu in d+Au at PHENIX
South muon arm (y < -1.2) :
J/y in
North
y>0
gluons in Pb / gluons in p
large XAu 0.090
Central arm (y 0) :
intermediate XAu 0.020
North muon arm (y > 1.2) :
Shadowing
Anti
Shadowing
small XAu 0.003
X
Eskola, et al., Nucl. Phys. A696 (2001) 729-746.
10
Results of RdAu vs. y
d+Au experiments at RHIC
RdAu vs. Rapidity
R AA =
RdAu
0 mb
3 mb
Low x2 ~ 0.003
(shadowing region)
( dN J /y / dy ) A + A
( dN J /y / dy ) p + p < N col
•Tendency is consistent with
the shadowing effects.
•Nuclear absorption cross
section : 0~3 mb.
• need more data to
quantify CNM effects.
11
J/y production in Au+Au and
Cu+Cu collisions at RHIC
12
RAA vs. Npart
RAA
1
Au+Au PHENIX Final
Cu+Cu PHENIX Preliminary
0
• Final results for Au+Au : nucl-ex/0611020 (submitted to PRL)
• Analysis for Cu+Cu will be finalized soon!
13
Observation 1
Different suppression
pattern between
mid-rapidity and
forward-rapidity
14
RAA vs. Npart in Au+Au
1
RAA
RAA vs. Npart.
0
Bar: uncorrelated error
Bracket : correlated error
1
0
S = RAA (1.2<|y|<2.2) /RAA (|y|<0.35)
|y|<0.35
1.2<|y|<2.2
• Different behavior in RAA
between mid-rapidity and
forward-rapidity.
• J/y suppression is larger
at forward-rapidity than
at mid-rapidity
• S ~ 0.6 for Npart>100
15
RAA and CNM effects
RAA
1
CNM effects
Gluon shadowing +
nuclear absorption
J/y measurement in
d+Au collisions.
RHIC CNM effects
(abs = 0, 1, 2mb at y=0, y=2)
R. Vogt et al., nucl-th/0507027
0
• Significant suppression relative to CNM effects.
• CNM effects predict larger suppression at mid-rapidity,
while data shows larger suppression at forward-rapidity.
Larger suppression by
CGC?
Heavy quark production is expected to be
suppressed due to “Color Glass Condensate”
at forward-rapidity. K. L. Tuchin hep-ph/0402298
Open charm yield
in Au+Au @ 200 GeV
h=0
h=2
• Larger suppression of J/y at forward-rapidity (Npart>100)
could be ascribed to Color Glass Condensate?
16
Larger suppression by
larger feed down?
Pythia calculation (done by S. X. Oda)
Red : 88 gg c1cg J/y
Green : 89 gg c2cg J/y
Blue : 105 gg c2c J/y
Magenta : MSEL 5 bbbar J/y
Larger suppression
of J/y yield
at forward rapidity
might be partly
(~15%) due to the
broad distribution
of J/psi from chi_c.
17
18
Observation 2
J/y suppression
from final state effect
is stronger at RHIC
compared to SPS
19
Comparison of RAA to NA50
NA50 at SPS (0<y<1)
PHENIX at RHIC (|y|<0.35)
PHENIX at RHIC (1.2<|y|<2.2)
RAA vs. Npart
NA50 at SPS
• 0<y<1
PHENIX at RHIC
• |y|<0.35
• 1.2<|y|<2.2
Bar: uncorrelated error
Bracket : correlated error
Global error = 12% and
Global error = 7% are not shown
• J/y Suppression (CNM
effects included) is similar
at RHIC (y=0) compared
to at SPS (0<y<1).
20
RAA and CNM
NA50 at SPS (0<y<1)
PHENIX at RHIC (|y|<0.35)
PHENIX at RHIC (1.2<|y|<2.2)
RAA at RHIC and SPS
RHIC CNM effects
(abs = 0, 1, 2mb at y=0, y=2)
R. Vogt et al., nucl-th/0507027
SPS CNM effects (abs = 4.18 mb)
NA50, Eur. Phys. J. C39 (2005):355
Bar: uncorrelated error
Bracket : correlated error
Global error = 12% and
Global error = 7% are not shown
21
RAA/CNM vs. Npart
NA50 at SPS (0<y<1)
PHENIX at RHIC (|y|<0.35)
PHENIX at RHIC (1.2<|y|<2.2)
Here, SPS data will
have sys. errors.
RAA/CNM at RHIC and SPS.
CNM:
abs = 4.18 mb for SPS
abs = 1 mb for RHIC
• Additional sys. error due to the
uncertainty of CNM (0-2mb) is
shown as box.
Bar: uncorrelated error
Bracket : correlated error
Global errors (12% and 7%)
are not shown here.
Box : uncertainty from CNM effect
• J/y suppression relative
to CNM effects is larger at
RHIC for the similar Npart.
(much larger
at forward rapidity)
22
RAA vs. pT
Suppression
trend is similar
for forward and
mid rapidity.
Suppression
consistent with
flat.
23
Exercise :
Comparison to
theoretical models
24
Dissociation by thermal
gluons
Dissociation by thermal gluons
• Successfully describe J/y suppression at SPS.
• Gluon density extrapolated to RHIC energy
R. Rapp et al., nucl-th/0608033
Nu Xu et al., nucl-th/0608010
Calculation for only y=0
• At mid-rapidity,
suppression is
weaker compared
to the dissociation
scenario in QGP.
25
J/y
Recombination of J/y
c
c-bar
c
Coalescence of c-cbar
Abundant ccbar pairs at RHIC [10-30@central Au+Au]
Dissociation + Recombination of J/y
R.Rapp et al, EPJC43 (2005) 91
Kinetic formation model
N. Xu at al, nucl-th/0608010
Transport model
total
recombination
dissociation
total
dissociation
recombination
Magnitude of suppression matches better.
However, tendency can not be reproduced well.
26
<pT2> vs. centrality
Another test for recombination
No recombination
Recombination
(pQCD charm )
Recombination
(thermal charm)
27
Kinetic formation model.
Dissociation + recombination model (R. Rapp and so on)
N cc =
dir
1
2
I 1 ( c N oc )
th
c N op
th
I 0 ( c N oc )
th
+ c N cc
2
th
Charm cross section (binary scaling)
• NLO pQCD calc, PHENIX, STAR
c ~ 10 at RHIC, ~30 at LHC
¼ c+g
X.N.Wang PLB540 (2002) 62
J/y+g
Gluon thermal dist.
(T=0.35 GeV)
k[GeV]
28
Transport model
Dissociation + recombination model (Nu Xu et al.)
ccbar J/y +g
J/y +g ccbar
R. L. Thews Eur. Phys. J C43, 97 (2005)
29
Sequential Melting
RAA/CNM vs. Bjorken
energy density
Bj =
Here, SPS data will
have sys. errors .
1
dE T
t 0 A dy
y=0
t0 = 1 fm/c. Be careful!
• Not clear t0 at SPS
• Crossing time ~ 1.6 fm/c
F. Karsch et al., PLB, 637 (2006) 75
• J/y suppression at SPS
can be understood
from the melting of y’
and cc.
30
Sequential Melting
Here, SPS data will
have sys. errors.
Bar: uncorrelated error
Bracket : correlated error
Global error = 12% is not shown here.
Box : uncertainty from CNM effects
F. Karsch et al., PLB, 637 (2006) 75
dET/dy : PHENIX, PRC 71, 034908 (2005)
RAA/CNM vs. Bjorken
energy density
Bj =
1
dE T
t 0 A dy
y=0
t0 = 1 fm/c. Be careful!
• Not clear t0 at SPS
and RHIC.
• t0 < 1 fm/c at RHIC
• Nucl. Phys. A757, 2005
31
Sequential Melting
Here, SPS data will
have sys. errors.
RAA/CNM vs. Bjorken
energy density
Bj =
1
dE T
t 0 A dy
y=0
t0 = 1 fm/c Be careful!
• t0 < 1 fm/c at RHIC
Bar: uncorrelated error
Bracket : correlated error
Global error = 12% and 7%
are not shown here.
Box : uncertainty from CNM effects
• Direct J/y melting at RHIC?
• Error is large and need better
CNM measurements at RHIC.
• Need to measure feed-down
contribution at RHIC energy.
32
Threshold Model
All J/y is suppressed above a threshold density.
A. K. Chaudhuri, nucl-th/0610031
Calculation for only y=0.
nc = threshold participant density
• Fate of J/y depends on the
local energy density
( participants density, n)
Similar model to the sequential
melting and associated to “onset
of J/y suppression”.
nc = 4.0 fm-2 matches to our
mid-rapidity data.
(cf. n~4.32 fm-2 in most central
Au+Au collisions)
• Describes well midrapidity data.
• How about forwardrapidity?
33
Summary
First high statistic data of J/y in Au+Au and Cu+Cu collisions
at mid-rapidity and forward-rapidity are available.
Suppression is larger at forward-rapidity than at
mid-rapidity for Npart>100.
Suggesting initial state effect such as Color Glass Condensate?
More feed down contribution at forward-rapidity?
RAA/CNM seems to be lower at RHIC compared to at SPS
However, suppression at mid-rapidity isn’t so strong as
expected by the models (destruction by thermal gluons)
extrapolated from SPS to RHIC.
Suppression + Recombination models match better.
Not consistent with the picture of only y’ and cc melting at
RHIC. Suppression of directly produced J/y?
Backup slides
Regeneration should cause narrowing of pT – does it?
Mean pT2 pretty flat
• as expected in regeneration picture of Thews
• Yan picture almost flat to start with, gives
slight fall-off with centrality
Caution - <pT2> from fits often unreliable for AA
(stable when restricted to pT<5 GeV/c here)
Better for theoretical comparisons to look at RAA(pT)?
nucl-ex/0611020
First cc observation
From run5 p+p central arms
Further analysis is on going.
FG
Mixed event BG
cc1 cc2
Mee-Mee [GeV]
Mee-Mee [GeV]
Color Glass Condensate
At RHIC, coherent charm production in nuclear color
field at y>0 (Qs > mc) and dominant at y>2.
Description by Color-Glass-Condensate
dAu = pp (2x197)a
SPS
FNAL
RHIC
XAu, XF dependence of a
Shadowing is weak.
Not scaling with X2
but scaling with XF.
Coincidence?
dAu = pp (2x197)a
• Shadowing
• Gluon energy loss
• Nuclear Absorption
Sudakov Suppression?
• Energy conservation
• hep-ph/0501260
Gluon Saturation?
• hep-ph/0510358
(in gold)
= Xd - XAu
E866, PRL 84, (2000) 3256
NA3, ZP C20, (1983) 101
PHENIX, PRL96 (2006) 012304
SPS J/y suppression
Dissociation by gluons
NA60 In-In 158 GeV
preliminary
Pb-Pb @ 158 GeV
Dissociation by gluons
Cross section : g+J/y c + c-bar
LO calculation
2
2 p 32 m Q
Diss ( k ) =
3 3 0
Diss
1/ 2
1 ( k / 0 1)
2
mQ
(k / 0 )
Decay width
5
k[GeV]
=< v ref Diss g
d kv ref Diss ( k ) f ( k ; T )
3
< v ref Diss =
3/2
'
d kf ( k ; T )
3
f ( k ; T ) = (exp( k / T ) 1)
T = 350 MeV, = 0.8 fm/c
0
1
0
Dissociation by gluons
Cross sectionはLO計算。正しいのか?
• Binding Energyの小さいy’やccに適応可能か?
5
Successful models (1)
Dissociation by thermal gluons
Based on LO pQCD cross section between J/y (cc) and g
R. Rapp PLB92 (2004) 212301
X.N.Wang PLB540 (2002) 62
Pb-Pb @ 158 GeV
20 40
100
ET [GeV]
PHENIX – p+p J/ψ – new run6 data
• Forward rapidity falloff steeper than 3gluon pQCD model - black curve [Khoze et al. , Eur.
Phys. J. C39, 163-171 (2005)]
• Slightly favors flatter shape at mid-rapidity
than most models
PHENIX - hep-ex/0611020
• BR•tot = 178 ± 3 ± 53 ± 18 nb
• Harder pT than lower energy & softer at
forward rapidity
<pT2> = 3.59±0.06
±0.16
<pT2> = 4.14±0.18
+0.30-0.20
Statistical Model (1)
Statistical Hadronization
元々のMotivationはSPSで<J/y>/<h>が中心衝突度に
依存しない事。Hadron生成量は統計Modelで記述できる。
Hadronの生成量
もうひとつのパラメター:u,d,s,c (Fugacity)
• u,d,s,c quarkがどれほど化学平衡に達しているかという指標
• 実際のYield = x ni
Statistical Model (2)
RHICではs ~ 1 (SPSでは、s<0.7)
Charm quarkは重い。殆どがHiggs Mass
衝突初期にしか出来ない。
QGP中での熱的生成量(exp-(2mc/Tc)) ~ 10-7
なのに、平衡状態を仮定して、J/yのYieldを計算
N cc =
dir
Strange quarkがようやく平衡状態
cが平衡状態からのずれを担う。
1
2
I 1 ( c N oc )
th
c N op
th
I 0 ( c N oc )
th
+ c N cc
2
th
cc-bar cross section
(experiment, FONLL)
Model Input: Nccdir, T, m, Volume
このModelはp+p, Au+AuにおけるCharm Productionに大きく依存する。
Statistical Model (3)
Charm Production Cross sectionによる大きな不確定
性がある。
NNLO pQCD計算
d/dy = 63.7+95.6-42.3 mb
d/dy = 123 mb (PHENIX)
•2倍程度、大きい。
•CDFが測定したCharm Cross
SectionもNNLOより
1.5倍程度大きい。
NNLO pQCD計算のCharm Cross
Sectionでは、よく合っているが、
PHENIXの実験結果では不一致。
Recombination – In medium Formation
Medium中でもJ/y生成。
Kinetic Formation Model
N cc =
dir
dN J /y
dt
=< v F c N c < v D g N J /y
Transport Model
1
2
I 1 ( c N oc )
th
c N op
th
I 0 ( c N oc )
th
+ c N cc
2
th
Recombination – In medium Formation
問題点と疑問点
• Charm Cross Sectionの大きな不確定性
• p+p, Au+AuにおけるCharm y, pT分布?
• QGP中ではCharmはDiffusiveに動いているが、理由はまだ分かっていない。
• J/y+gccbar のCross Sectionが正しいか?
ccやy’に対するRecombinationは考えられていない。
• Ncの与え方。どのモデルもNcは時間に対して一定。正しい?
• Charmの熱的生成はない、Charm数は保存。
• DメソンへのRecombinationも考慮すべき。NcNc(t)、tと共に減少するはず。
ただ、DメソンとJ/yではFreezeout時間が異なるか?
• J/yの方が圧倒的に早く生成されるなら、正しいかも。
• Naïveには、ccが空間的に近くにないといけない。ccがCoupleするよりも、
u,dとCoupleする方が多いはず。
dN J /y
dt
=< v F c N c < v D g N J /y
dN J /y
dt
Au+AuにおけるCharm, D, J/y生成
を理解しなければならない。
=< v F c (t ) N c (t ) < v D g N J /y ,
dN c
dt
= < v c D u ,d ,s N c
24
Charm Production at RHIC
Need to understand charm
production and its modification
in the medium.
Non-photonic e spectra
from PHENIX.
Implication of charm
Energy loss
Yield vs. pT for two
rapidity ranges
in p+p collisions.
Charm vs. y
Non-photonic e v2
from PHENIX.
Thermalization of
Charm.
BW fit of D-meson spectra
From STAR.
Freeze out and collective
Behavior of charm.
AuAu Central charm
hadron
AuAu Central p,
K, p