Transcript J/ψ関連の話
1 J/y production in Au+Au and Cu+Cu Collisions at RHIC Taku Gunji CNS, University of Tokyo Heavy Ion Café 2007/2/10 2 Outline Physics Motivation J/y in the medium J/y measurement at SPS J/y measurement at RHIC d+Au collisions and cold matter effects Au+Au and Cu+Cu collisions Comparison to the theoretical models Summary & Outlook 3 Physics Motivation J/y suppression in QGP due to the Debye Color Screening T.Matsui & H. Satz PLB178 416 (1986) Signature of de-confinement Debye Color Screening c c Color Screening • Debye Radius < Rcc No formation of c-cbar bound states Suppression depends on temperature (density) • Recent quenched lattice QCD calculations • Melting temp. for J/y ~1.5-2.5Tc • Melting temp. for cc,y’ ~1.1Tc T. Hatsuda, M. Asakawa, PRL. 92 (2004) 012001 S. Datta, et al., PRD69 (2004) 094507 4 J/y = Thermometer of QGP 2 Key points Feed down contribution from y’ and cc • All J/y = ~0.6 J/y (direct) + ~0.3cc + ~ 0.1y’ • Fraction is not well-understood experimentally TJ/y ~ 2Tc and Tc, Ty’ ~ 1.1Tc Expected J/y (All) Suppression Pattern “Sequential Melting” Temperature can be deduced from magnitude of suppression. 温度 5 J/y in the Medium J/y production and evolution of the medium All stage of collisions modify the J/y yield. Initial stage Nuclear medium Hot and dense medium Mixed Phase Freeze out • Gluon Shadowing • CGC • Nuclear Absorption • Cronin effect • Color screening (Dissociation by thermal gluons) • cc coalescence • Dissociation by comovers Cold Matter Effect Final state Effect 6 J/y measurement at SPS NA38([email protected] GeV)、NA50([email protected] GeV, [email protected]) e L abs Nuclear Absorption of J/y L: effective path length of J/y in nuclear target Anomalous suppression relative to nuclear Absorption Pb+Pb P B • Very promising to study J/y production in A+A collisions at higher collision energy. • 10x √sNN at RHIC • 2-3x gluon density at RHIC 7 PHENIX Experiment PHENIX can measure J/y in wide rapidity range Central Arms: Hadrons, photons, electrons J/y e+e|h|<0.35 Pe > 0.2 GeV/c Df = p (2 arms x p/2) Muon Arms: Muons at forward rapidity J/y m+m 1.2< |h| < 2.4 Pm > 2 GeV/c Df = 2p 8 RHIC cold nuclear matter effects (CNM) 9 J/y in d+Au collisions Understand the cold matter effects Gluon Shadowing Nuclear absorption Cronin effect (pT broadening) rapidity y Xd J/y in South y<0 Xd XAu XAu Coverage of XAu in d+Au at PHENIX South muon arm (y < -1.2) : J/y in North y>0 gluons in Pb / gluons in p large XAu 0.090 Central arm (y 0) : intermediate XAu 0.020 North muon arm (y > 1.2) : Shadowing Anti Shadowing small XAu 0.003 X Eskola, et al., Nucl. Phys. A696 (2001) 729-746. 10 Results of RdAu vs. y d+Au experiments at RHIC RdAu vs. Rapidity R AA = RdAu 0 mb 3 mb Low x2 ~ 0.003 (shadowing region) ( dN J /y / dy ) A + A ( dN J /y / dy ) p + p < N col •Tendency is consistent with the shadowing effects. •Nuclear absorption cross section : 0~3 mb. • need more data to quantify CNM effects. 11 J/y production in Au+Au and Cu+Cu collisions at RHIC 12 RAA vs. Npart RAA 1 Au+Au PHENIX Final Cu+Cu PHENIX Preliminary 0 • Final results for Au+Au : nucl-ex/0611020 (submitted to PRL) • Analysis for Cu+Cu will be finalized soon! 13 Observation 1 Different suppression pattern between mid-rapidity and forward-rapidity 14 RAA vs. Npart in Au+Au 1 RAA RAA vs. Npart. 0 Bar: uncorrelated error Bracket : correlated error 1 0 S = RAA (1.2<|y|<2.2) /RAA (|y|<0.35) |y|<0.35 1.2<|y|<2.2 • Different behavior in RAA between mid-rapidity and forward-rapidity. • J/y suppression is larger at forward-rapidity than at mid-rapidity • S ~ 0.6 for Npart>100 15 RAA and CNM effects RAA 1 CNM effects Gluon shadowing + nuclear absorption J/y measurement in d+Au collisions. RHIC CNM effects (abs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 0 • Significant suppression relative to CNM effects. • CNM effects predict larger suppression at mid-rapidity, while data shows larger suppression at forward-rapidity. Larger suppression by CGC? Heavy quark production is expected to be suppressed due to “Color Glass Condensate” at forward-rapidity. K. L. Tuchin hep-ph/0402298 Open charm yield in Au+Au @ 200 GeV h=0 h=2 • Larger suppression of J/y at forward-rapidity (Npart>100) could be ascribed to Color Glass Condensate? 16 Larger suppression by larger feed down? Pythia calculation (done by S. X. Oda) Red : 88 gg c1cg J/y Green : 89 gg c2cg J/y Blue : 105 gg c2c J/y Magenta : MSEL 5 bbbar J/y Larger suppression of J/y yield at forward rapidity might be partly (~15%) due to the broad distribution of J/psi from chi_c. 17 18 Observation 2 J/y suppression from final state effect is stronger at RHIC compared to SPS 19 Comparison of RAA to NA50 NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) RAA vs. Npart NA50 at SPS • 0<y<1 PHENIX at RHIC • |y|<0.35 • 1.2<|y|<2.2 Bar: uncorrelated error Bracket : correlated error Global error = 12% and Global error = 7% are not shown • J/y Suppression (CNM effects included) is similar at RHIC (y=0) compared to at SPS (0<y<1). 20 RAA and CNM NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) RAA at RHIC and SPS RHIC CNM effects (abs = 0, 1, 2mb at y=0, y=2) R. Vogt et al., nucl-th/0507027 SPS CNM effects (abs = 4.18 mb) NA50, Eur. Phys. J. C39 (2005):355 Bar: uncorrelated error Bracket : correlated error Global error = 12% and Global error = 7% are not shown 21 RAA/CNM vs. Npart NA50 at SPS (0<y<1) PHENIX at RHIC (|y|<0.35) PHENIX at RHIC (1.2<|y|<2.2) Here, SPS data will have sys. errors. RAA/CNM at RHIC and SPS. CNM: abs = 4.18 mb for SPS abs = 1 mb for RHIC • Additional sys. error due to the uncertainty of CNM (0-2mb) is shown as box. Bar: uncorrelated error Bracket : correlated error Global errors (12% and 7%) are not shown here. Box : uncertainty from CNM effect • J/y suppression relative to CNM effects is larger at RHIC for the similar Npart. (much larger at forward rapidity) 22 RAA vs. pT Suppression trend is similar for forward and mid rapidity. Suppression consistent with flat. 23 Exercise : Comparison to theoretical models 24 Dissociation by thermal gluons Dissociation by thermal gluons • Successfully describe J/y suppression at SPS. • Gluon density extrapolated to RHIC energy R. Rapp et al., nucl-th/0608033 Nu Xu et al., nucl-th/0608010 Calculation for only y=0 • At mid-rapidity, suppression is weaker compared to the dissociation scenario in QGP. 25 J/y Recombination of J/y c c-bar c Coalescence of c-cbar Abundant ccbar pairs at RHIC [10-30@central Au+Au] Dissociation + Recombination of J/y R.Rapp et al, EPJC43 (2005) 91 Kinetic formation model N. Xu at al, nucl-th/0608010 Transport model total recombination dissociation total dissociation recombination Magnitude of suppression matches better. However, tendency can not be reproduced well. 26 <pT2> vs. centrality Another test for recombination No recombination Recombination (pQCD charm ) Recombination (thermal charm) 27 Kinetic formation model. Dissociation + recombination model (R. Rapp and so on) N cc = dir 1 2 I 1 ( c N oc ) th c N op th I 0 ( c N oc ) th + c N cc 2 th Charm cross section (binary scaling) • NLO pQCD calc, PHENIX, STAR c ~ 10 at RHIC, ~30 at LHC ¼ c+g X.N.Wang PLB540 (2002) 62 J/y+g Gluon thermal dist. (T=0.35 GeV) k[GeV] 28 Transport model Dissociation + recombination model (Nu Xu et al.) ccbar J/y +g J/y +g ccbar R. L. Thews Eur. Phys. J C43, 97 (2005) 29 Sequential Melting RAA/CNM vs. Bjorken energy density Bj = Here, SPS data will have sys. errors . 1 dE T t 0 A dy y=0 t0 = 1 fm/c. Be careful! • Not clear t0 at SPS • Crossing time ~ 1.6 fm/c F. Karsch et al., PLB, 637 (2006) 75 • J/y suppression at SPS can be understood from the melting of y’ and cc. 30 Sequential Melting Here, SPS data will have sys. errors. Bar: uncorrelated error Bracket : correlated error Global error = 12% is not shown here. Box : uncertainty from CNM effects F. Karsch et al., PLB, 637 (2006) 75 dET/dy : PHENIX, PRC 71, 034908 (2005) RAA/CNM vs. Bjorken energy density Bj = 1 dE T t 0 A dy y=0 t0 = 1 fm/c. Be careful! • Not clear t0 at SPS and RHIC. • t0 < 1 fm/c at RHIC • Nucl. Phys. A757, 2005 31 Sequential Melting Here, SPS data will have sys. errors. RAA/CNM vs. Bjorken energy density Bj = 1 dE T t 0 A dy y=0 t0 = 1 fm/c Be careful! • t0 < 1 fm/c at RHIC Bar: uncorrelated error Bracket : correlated error Global error = 12% and 7% are not shown here. Box : uncertainty from CNM effects • Direct J/y melting at RHIC? • Error is large and need better CNM measurements at RHIC. • Need to measure feed-down contribution at RHIC energy. 32 Threshold Model All J/y is suppressed above a threshold density. A. K. Chaudhuri, nucl-th/0610031 Calculation for only y=0. nc = threshold participant density • Fate of J/y depends on the local energy density ( participants density, n) Similar model to the sequential melting and associated to “onset of J/y suppression”. nc = 4.0 fm-2 matches to our mid-rapidity data. (cf. n~4.32 fm-2 in most central Au+Au collisions) • Describes well midrapidity data. • How about forwardrapidity? 33 Summary First high statistic data of J/y in Au+Au and Cu+Cu collisions at mid-rapidity and forward-rapidity are available. Suppression is larger at forward-rapidity than at mid-rapidity for Npart>100. Suggesting initial state effect such as Color Glass Condensate? More feed down contribution at forward-rapidity? RAA/CNM seems to be lower at RHIC compared to at SPS However, suppression at mid-rapidity isn’t so strong as expected by the models (destruction by thermal gluons) extrapolated from SPS to RHIC. Suppression + Recombination models match better. Not consistent with the picture of only y’ and cc melting at RHIC. Suppression of directly produced J/y? Backup slides Regeneration should cause narrowing of pT – does it? Mean pT2 pretty flat • as expected in regeneration picture of Thews • Yan picture almost flat to start with, gives slight fall-off with centrality Caution - <pT2> from fits often unreliable for AA (stable when restricted to pT<5 GeV/c here) Better for theoretical comparisons to look at RAA(pT)? nucl-ex/0611020 First cc observation From run5 p+p central arms Further analysis is on going. FG Mixed event BG cc1 cc2 Mee-Mee [GeV] Mee-Mee [GeV] Color Glass Condensate At RHIC, coherent charm production in nuclear color field at y>0 (Qs > mc) and dominant at y>2. Description by Color-Glass-Condensate dAu = pp (2x197)a SPS FNAL RHIC XAu, XF dependence of a Shadowing is weak. Not scaling with X2 but scaling with XF. Coincidence? dAu = pp (2x197)a • Shadowing • Gluon energy loss • Nuclear Absorption Sudakov Suppression? • Energy conservation • hep-ph/0501260 Gluon Saturation? • hep-ph/0510358 (in gold) = Xd - XAu E866, PRL 84, (2000) 3256 NA3, ZP C20, (1983) 101 PHENIX, PRL96 (2006) 012304 SPS J/y suppression Dissociation by gluons NA60 In-In 158 GeV preliminary Pb-Pb @ 158 GeV Dissociation by gluons Cross section : g+J/y c + c-bar LO calculation 2 2 p 32 m Q Diss ( k ) = 3 3 0 Diss 1/ 2 1 ( k / 0 1) 2 mQ (k / 0 ) Decay width 5 k[GeV] =< v ref Diss g d kv ref Diss ( k ) f ( k ; T ) 3 < v ref Diss = 3/2 ' d kf ( k ; T ) 3 f ( k ; T ) = (exp( k / T ) 1) T = 350 MeV, = 0.8 fm/c 0 1 0 Dissociation by gluons Cross sectionはLO計算。正しいのか? • Binding Energyの小さいy’やccに適応可能か? 5 Successful models (1) Dissociation by thermal gluons Based on LO pQCD cross section between J/y (cc) and g R. Rapp PLB92 (2004) 212301 X.N.Wang PLB540 (2002) 62 Pb-Pb @ 158 GeV 20 40 100 ET [GeV] PHENIX – p+p J/ψ – new run6 data • Forward rapidity falloff steeper than 3gluon pQCD model - black curve [Khoze et al. , Eur. Phys. J. C39, 163-171 (2005)] • Slightly favors flatter shape at mid-rapidity than most models PHENIX - hep-ex/0611020 • BR•tot = 178 ± 3 ± 53 ± 18 nb • Harder pT than lower energy & softer at forward rapidity <pT2> = 3.59±0.06 ±0.16 <pT2> = 4.14±0.18 +0.30-0.20 Statistical Model (1) Statistical Hadronization 元々のMotivationはSPSで<J/y>/<h>が中心衝突度に 依存しない事。Hadron生成量は統計Modelで記述できる。 Hadronの生成量 もうひとつのパラメター:u,d,s,c (Fugacity) • u,d,s,c quarkがどれほど化学平衡に達しているかという指標 • 実際のYield = x ni Statistical Model (2) RHICではs ~ 1 (SPSでは、s<0.7) Charm quarkは重い。殆どがHiggs Mass 衝突初期にしか出来ない。 QGP中での熱的生成量(exp-(2mc/Tc)) ~ 10-7 なのに、平衡状態を仮定して、J/yのYieldを計算 N cc = dir Strange quarkがようやく平衡状態 cが平衡状態からのずれを担う。 1 2 I 1 ( c N oc ) th c N op th I 0 ( c N oc ) th + c N cc 2 th cc-bar cross section (experiment, FONLL) Model Input: Nccdir, T, m, Volume このModelはp+p, Au+AuにおけるCharm Productionに大きく依存する。 Statistical Model (3) Charm Production Cross sectionによる大きな不確定 性がある。 NNLO pQCD計算 d/dy = 63.7+95.6-42.3 mb d/dy = 123 mb (PHENIX) •2倍程度、大きい。 •CDFが測定したCharm Cross SectionもNNLOより 1.5倍程度大きい。 NNLO pQCD計算のCharm Cross Sectionでは、よく合っているが、 PHENIXの実験結果では不一致。 Recombination – In medium Formation Medium中でもJ/y生成。 Kinetic Formation Model N cc = dir dN J /y dt =< v F c N c < v D g N J /y Transport Model 1 2 I 1 ( c N oc ) th c N op th I 0 ( c N oc ) th + c N cc 2 th Recombination – In medium Formation 問題点と疑問点 • Charm Cross Sectionの大きな不確定性 • p+p, Au+AuにおけるCharm y, pT分布? • QGP中ではCharmはDiffusiveに動いているが、理由はまだ分かっていない。 • J/y+gccbar のCross Sectionが正しいか? ccやy’に対するRecombinationは考えられていない。 • Ncの与え方。どのモデルもNcは時間に対して一定。正しい? • Charmの熱的生成はない、Charm数は保存。 • DメソンへのRecombinationも考慮すべき。NcNc(t)、tと共に減少するはず。 ただ、DメソンとJ/yではFreezeout時間が異なるか? • J/yの方が圧倒的に早く生成されるなら、正しいかも。 • Naïveには、ccが空間的に近くにないといけない。ccがCoupleするよりも、 u,dとCoupleする方が多いはず。 dN J /y dt =< v F c N c < v D g N J /y dN J /y dt Au+AuにおけるCharm, D, J/y生成 を理解しなければならない。 =< v F c (t ) N c (t ) < v D g N J /y , dN c dt = < v c D u ,d ,s N c 24 Charm Production at RHIC Need to understand charm production and its modification in the medium. Non-photonic e spectra from PHENIX. Implication of charm Energy loss Yield vs. pT for two rapidity ranges in p+p collisions. Charm vs. y Non-photonic e v2 from PHENIX. Thermalization of Charm. BW fit of D-meson spectra From STAR. Freeze out and collective Behavior of charm. AuAu Central charm hadron AuAu Central p, K, p