Transcript PPT file
プラズマ雑誌会 速報 2004年4月21日 Pevtsov, A. A. et al. (2003) ApJ 598, 1387 The Relationship Between X-ray Radiance and Magnetic Flux (太陽、恒星、前主系列星の磁束とX線光度の関係に関する経験則を導出) Schwadron, N. A. and McComas, D. J. (2003) ApJ 599, 1395 Solar Wind Scaling Law (高速風と低速風の統一モデル、簡単なスケーリング則を導出) Meier, D. L. and Nakamura, M. (2003) in Proc. 3D Signatures in Stellar Exlplosions, a workshop honoring J. C. Wheeler's 6oth Birthday, 10-13 June 2003, MHD Supernova Jets: The Missing Link (astro-ph 0312050) (宇宙ジェット、ガンマ線バースト、惑星状星雲の統一モデル、図がおもしろ い) Pevtsov, A. A. et al. (2003) ApJ 598, 1387 The Relationship Between X-ray Radiance and Magnetic Flux 現代(磁気的)加熱説 • アルフベン波説 Uchida-Kaburaki 1974. Wenzel 1974, Hollweg 1981, Sakurai-Granik 1984 Kudoh-Shibata 1999 ほか多数 • ナノフレア説 Parker 1988 ほか多数 アルフベン波説(Kudoh,Shibata 1999) Nanoflare 説 加熱率の磁場強度依存性? • アルフベン波説 F = fρV^2 V_A ∝ B • ナノフレア説 F=f B^2 V/4π ∝ B^2 • フレア(maximum reconnection heating rate) F=f B^2 V_A/ 4π∝ B^3 最新ようこう観測 • Shimizu(1996)PhD thesis 活動領域コロナは microflare/nanoflare だらけ! => ナノフレア加熱??? • Yashiro(2000)PhD thesis Lx(活動領域) ∝ B^1.07 F ∝ B => アルフベン波加熱??? 活動領域における Total X-ray flux vs. total magnetic flux (Yashiro 2000) 恒星コロナ ほとんどの恒星にコロナが存在 1)表面対流層のない星にもコロナ 2)X線光度 ∝ 回転速度^2 3)X線フラックス∝ 表面(平均)磁場 Stellar corona in HR diagram Stellar X-ray luminosity vs. rotation velocity Stellar X-ray flux vs. magnetic field strength Pevtsov, A. A. et al. (2003) ApJ 598, 1387 The Relationship Between X-ray Radiance and Magnetic Flux (太陽、恒星、前主系列星の磁束とX線光度の関係に関する経験則を導出) Schwadron, N. A. and McComas, D. J. (2003) ApJ 599, 1395 Solar Wind Scaling Law Schwadron, N. A. and McComas, D. J. (2003) ApJ 599, 1395 Solar Wind Scaling Law (高速風と低速風の統一モデル、簡単なスケーリング則を導出) Fig Meier, D. L. and Nakamura, M. (2003) in Proc. 3D Signatures in Stellar Exlplosions, a workshop honoring J. C. Wheeler's 6oth Birthday, 10-13 June 2003, MHD Supernova Jets: The Missing Link (astro-ph 0312050) Quasar(QSO: 3C273) Looks like a star, but actually a nucleus of galaxies => Active Galactic Nulei (AGN) Distance ~ 100M pc => huge energy release rate ~1046 erg/s Total released energy ~1062 erg optical Most energetic ojbect in our universe Radio Galaxy(Cygnus A): AGN (distance=150Mpc、length=100kpc) Radio/VLA Protostellar Jet (HH1/2) (length ~ 1 pc) Optical/ Hubble Accretion disk (tori) was revealed at footpoint of AGN jets Accretion disk at the footpoint of protostellar jets Jets from close binary system SS433 jet (radio、velocity=0.26c) SS433 jet (X-ray/ASCA) Superluminal motion in jets from close binary system (microquasar) (jet velocity ~ 1.25 c、 GRS1915+1015) AGN jets often show superlumina l motion Apparent speed is 10 c ! Summary of Characteristics of Astrophysical Jets AGN Jet length Close binary protostar system Supermassi Black hole protostar ve or neutron black hole star 1 Mpc 3 pc 0.3 pc Jet velocity c 0.3c - c 100km/s Escape velocity c 0.3c - c 100km/s Central object Planetary nebula Crab nubula X-ray (CHANDRA) magnetic field and rotation are essential condition for jet formation chandra_pulsar_jet_B150958_p011016.1.jpg 3. MHD model of astrophysical jets Accelerate jets by magnetic field and rotation Magnetic field line jet Accretion disk Protostar, black hole Centrifugal force Magnetic pressure Blandford-Payne 1982, Lovelace et al 1986, Pudritz-Norman 1986, Uchida-Shibata 1985, Shu et al. 1994, … Magneto-centrifugal force beads wire rotation Centrifugal force Magnetic pinch due to helically twisted magnetic field (toroidal field) collimate jets First computer simulation of MHD jets from accretion disk 磁力線 円盤 Time Jet velocity ~ Kepler veloicty (rotation velocity of the disk) Shibata & Uchida (1990、 1986) MHD jet with bow shock (Kudoh et al. 2000)