Baba_IFMIF - IAEA Nuclear Data Services

Download Report

Transcript Baba_IFMIF - IAEA Nuclear Data Services

Measurement of neutron emission spectra and
activation in Li, Be,C,Al,Fe,Ta(d,n) reactions by
in the 20-40 MeV region
M.Baba, M.Hagiwara, T.Itoga, T.Aoki
Cyclotron & Radioisotope Center, Tohoku University , Japan
M.Sugimoto
Japan Atomic Energy Research Institute, Tokai Establishment, Japan
T.Muroga,
National Institute for Fusion Research, Toki, Japan
****CONTENTS*******
1. Introduction
2. Apparatus & Experimental Methods
3. Results; Neutron spectra & Activation
4. Summary
1. INTRODUCTION

In IFMIF
・ Neutron spectrum extends beyond 50 MeV (High energy tail)
・ Neutrons show very strong angular dependence
・ Beam intensity is as high as 250 mA
Design & maintenance of IFMIF require the data on
・ Energy-angular distribution of (d,n) neutrons;
Li, accelerator structural elements
・ Production/ accumulation of radioactive nuclides
3H , 7Be, 22Na, 24Na etc
Experimental data were very few and discrepant
INTRODUCTION(2)
7Li(d,n)
TTY;
M. A. Lone et al.
Nucl. Instrum. and Methods 143 (1977) 331-344
* Large discrepancies, Energy range is limited
In this study
1. Neutron spectrum from thick, thin targets of
- Li, Be, C, Al, Fe, Ta
- @ 25, 40 MeV
- 0-110-deg.
・Comparison with exp., calculations
・Systematics vs mass
2. Radio-nuclide production
- Li, Be, C, Al, Fe, (Ta)
- 7Be, 22Na, 24Na, etc
2. Experimental Apparatus
Cyclotron & Radioisotope Center, Tohoku University (CYRIC)
Layout of CYRIC
Beam chopper
Beam swinger
Flight path
Performance of
K=110 AVF cyclotron
•Protons
10-90 MeV
•Deuterons
10-65 MeV
•3He
20-170 MeV
•4He
20-130 MeV
・Heavy Ions
・Beam Chopper
etc.
Automated-irradiation
apparatus
Online-mass separator
Semiconductor
Irradiation apparatus
CYRIC TOF Line
Beam-swinger & Well collimated TOF channel
Beam-swinger
system
Setup detectors at two locations
Vertical view of neutron course
TOF Measurement
Copper Mesh(-500V)
MCS
3 parameter list mode
・2-gain
・2-flight path
Radio-nuclides production
deuteron
neutron spectrum meas.
After TOF measurement, γ-ray measurement with Ge detector
4-2. γ-ray spectrum
4-1. SETUP
106
7
Be 477.6 keV
5
10
Sample
HV+4000V
104
Counts
Ge detector
γray
106
7
Be 477.6 keV
5
10
Counts
104
103
102
101
19 cm
Am
p
100
0
1000
-ray energy (keV)
2000
103
102
101
MC
A
100
0
1000
-ray energy (keV)
2000
TOF data processing
low-gain raw data
n-event
 -event
n- discrimination [channel]
Pulse height [channel]
Pulse height [channel]
high-gain raw data
n-event
 -event
n- discrimination [channel]
Derivation of neutron spectrum
1. n-γdiscrimination
2. Bias setting ; ~ 0.6 MeV for high-gain, ~3.5 MeV for low-gain
3. TOF to energy spectrum
 1


En (i)  mc  m0c  m0c 
1
2
 1 

2
m0
I
L
c
2
2

vn ( x)
L

c
c  Tn (i)
: Rest mass of a neutron
: Channel number of the events
: Flight path
: Light velocity.
4. Absolute scale; detector efficiency,solid-angle, current
(SCINFUL-R code).
5. Corrections for attenuation in target (air:LA150)
 just stopping length to avoid excessive correction
Radionuclide production (1)
Beam fluctuation with MCS
 C
   e
Tc
 (1  e
Tm
n
)  {Qi  e(ni )t }
i 1
2) Number of products
N  R  Qtotal
3) Activity
N
A
I t
Coulomb/1 min
R
[*10-10]
1) Reaction rate
105
104
103
102
101
100
0
500
1000
 : decay constant (s-1),
channel/1 min
C : total counts of gamma-ray peak area,
 : peak efficiency,
Tc : cooling time (s),
 : branching ratio of gamma rays,
Tm: counting time (s),
Qi : beam current (Coulomb) for irradiation time
interval Dt (s) [using Multi Channel Scaler : MCS]
N : number of produced atoms in the target (atom),
A : dps/(A·h)
I : beam current (A)
T : irradiation total time (h)
1500
Rdionuclide production (2)

4) Cross-section
RNQ
Nd It
Energy determination & attenuation correction
1.
Energy of each stack sample
-TRIM code
dE/dx (deuteron in Li)
Energy distribution (deuteron in Li)
Attenuation of sample
- Shen’s empirical formula
100
Attenation factor
40
Energy (MeV)
1.
30
20
10
by Shen's emprical formula
0
0
5
10
15
Depth (mm)
20
25
10-1
0
1
Depth (cm)
2
3. Results & Discussion
1. Neutron spectrum; 0~110-deg.
・Li, Be
Ed= 25 MeV thick, thin (Li)
Ed= 40 MeV thick, thin (Li)
・C, Al, Fe, Cu, Ta, W
Ed= 40 MeV thick
2. Radionuclide production
Target: Li, C, Al, Fe, Ta, W
Nuclides; 7Be, 22Na, 24Na,
natLi(d,xn)
11
Ed = 25 MeV
natLi(d,xn)
nat Thick lithium
Li(d,xn) spectra
Comparison with Lone’s data
10
109
1011
0-deg
5-deg
10-deg
15-deg
20-deg
25-deg
30-deg
40-deg
60-deg
90-deg
1010
Neutron Yield [MeV-1・sr-1・C-1]
Neutron yields [MeV-1sr-1C-1]
1010
108
107
106
Present
Ed=25MeV 0deg
M.A.Lone et al.
Ed=23MeV 0deg
109
108
107
106
5
10
104
0
0-deg for 25 MeV
10
20
30
40
Neutron energy [MeV]
50
105
0
10
20
30
Neutron Energy [MeV]
40
natLi(d,xn)
Ed = 40 MeV Thick and thin lithium
thick natLi(d,xn) for Ed= 40 MeV
[7Li(d,n) Qvalue=+15.0 MeV]
thin natLi(d,xn) for Ed= 40 MeV
[7Li(d,n) Qvalue=+15.0 MeV]
1010
0-deg
10-deg
15-deg
20-deg
30-deg
45-deg
60-deg
90-deg
110-deg
1010
109
108
107
106
0
10
20
30
40
Neutron Energy [MeV]
50
Neutron flux [#・MeV-1・sr-1・C-1]
Neutron flux [#・MeV-1・sr-1・C-1]
1011
0-deg
10-deg
15-deg
20-deg
30-deg
45-deg
60-deg
90-deg
110-deg
109
108
107
106
105
0
10
20
30
40
Neutron Energy [MeV]
50
natBe(d,xn)
natLi(d,xn)
Neutron yields [MeV-1sr-1C-1]
1010
109
[9Be(d,n) Q値=4.36 MeV]
1011
0-deg
5-deg
10-deg
15-deg
20-deg
25-deg
30-deg
40-deg
60-deg
90-deg
1010
Neutron yields [MeV-1sr-1C-1]
1011
[7nat
Li(d,n)
Q値=+15.0
MeV]
Li(d,xn)
spectra
108
107
106
109
108
107
106
105
105
104
0
104
0
10
20
30
40
Neutron energy [MeV]
50
0-deg
5-deg
10-deg
15-deg
20-deg
25-deg
30-deg
40-deg
60-deg
90-deg
10
20
30
40
Neutron energy [MeV]
50
1011
1010
1010
-1
Neutron flux [#・MeV ・sr ・C ]
1011
-1
109
-1
-1
-1
-1
Neutron flux [#・MeV ・sr ・C ]
Li; comparison with exp. & calculation
108
Present (0-deg)
F.M. Mann et al
c
McDeli
M Deliciuos
MCNPX
107
106
0
10
20
30
40
Neutron Energy [MeV]
50
109
108
Present (20-deg)
F.M. Mann et al
McDeli
McDeliciuos
MCNPX
107
106
0
10
20
30
40
Neutron Energy [MeV]
50
4π-integrated
Neutron Yield [#・C-1]
Neutron yields
Total ( = 4)
1011
Present
Aoki et al.
Lone et al.
Johnson et al.
Sugimoto et al.
Mann et al.
C
MCDeLicious cal.
M DeLi cal.
MCNPX cal.
1010
1012
0゜- differential
Neutron Yield [#・sr-1・C-1]
Forward ( = 0 deg)
1011
Present
Aoki et al.
Daruga et al.
Weaver et al.
Goland et al.
Amols et al.
Nelson et al.
Lone et al.
Salmarsh et al.
Johnson et al.
Sugimoto
et al.
C
MCDeLicious cal.
M DeLi cal.
MCNPX cal.
1010
109
0
10
20
30
Deuteron Energy [MeV]
40
D 25 MeV thin spectra: Serber / Advanced Serber model *
[10 ] 1
9
EXP 0-deg
Ext-Serber model
Serber model
0-deg
5-deg
10-deg
15-deg
20-deg
30-deg
45-deg
60-deg
90-deg
110-deg
109
108
Neutron Flux (#・MeV-1・C-1・sr-1)
Neutron Flux (#・MeV-1・C-1・sr-1)
1010
Li(d,n) 25 MeV at 0 deg
Li(d,n) 25 MeV neutron spectra
107
106
105
0
10
20
30
40
0.8
7
Li(d,n) 8Be exitation level
0.6
7
8
Li(d,n) Be G.R.
0.4
0.2
0
0
10
Neutron Energy (MeV)
* H.Utsunomiya (MSU); Phys. Rev., C32 (1985) 32
20
30
Neutron Energy (MeV)
40
D 40 MeV thin spectra: Serber / Advanced Serber model
Li(d,n) 40 MeV at 0-degree
[10 ] 3
9
7
2
8
Li(d,n) Be exitation level
-1
-1
-1
Neutron Flux (#・MeV ・C ・sr )
EXP 0-deg
Ext-Serber model
Serber model
7
Li(d,n) 8Be G.R.
1
0
0
10
20
30
40
Neutron Energy (MeV)
50
natC(d,xn),27Al(d,n)
1010
1010
0-deg
10-deg
15-deg
20-deg
30-deg
45-deg
60-deg
75-deg
90-deg
110-deg
-1
108
107
106
105
C
0
10
20
30
40
Neutron energy [MeV]
0-deg
10-deg
15-deg
20-deg
30-deg
45-deg
60-deg
75-deg
90-deg
110-deg
109
-1
-1
109
Neutron yields [#・MeV ・sr ・C ]
Neutron yields [#・MeV-1・sr-1・C-1]
spectra
50
108
107
106
105
Al
0
10
20
30
40
Neutron energy [MeV]
50
Fe, Ta(d,n)
10
10
10
nat
Neutron Flux [#/
(MeV ·sr · C )]
10
10
10
10
nat
Fe(d,n)
9
10
Ta(d,n)
10
8
10
7
10
6
10
9
8
7
6
00 deg.
10
5
05 deg.
10
5
15 deg.
10
30 deg.
4
10
4
60 deg.
10
90 deg.
3
10
3
110 deg.
10
2
10
0
10
20
30
40
50
0
10
Neutron energy [MeV]
20
30
40
50
2
Fe, Ta(d,n): comparison
10
10
10
10
Meulders et al., Ed =50 MeV
9
Neutron Flux [#/(MeV·sr·C)]
10
10
0 deg.
Meulders et al., Ed =33 MeV
9
8
10
10
8
7
present Ed = 40 MeV
10
15 deg.
6
10
10
7
Ta(d,n) at 0 degree
10
5
10
6
4
10
10
5
10
4
Line : Shin et al., Ed=33MeV, Cu(d,n)
3
10 Symbol : present, Ed=40 MeV, Fe(d,n)
0
10
20
30
Neutron energy [MeV]
2
J. P. Meulders,
10 et al., Phys. Med. Biol., 20, (1975) 235-243
40K. Shin, et al.,0 Phys. Rev.
10 C, 29,
20 (1984)301307-1316
40
Neutron energy [MeV]
Neutron Flux [#/(MeV·sr·C)]
Cross-section systematics vs mass
10
11
10
10
10
9
10
8
10
7
10
6
10
5
10
4
10
3
10
2
10
1
10
0
10
0 deg.
(d,n) @Ed=40MeV
Li(d,n) :
largest yields
C(d,n) :
yield is larger than
heavy element
15 deg 
Ta
Fe
C
Al
Li
M. Hagiwara, et al.,
J. Nucl. Materials, 329-333, (2004) 218-222
M. Hagiwara, et al.,
J. Fusion Sci. Tech., in print
-1
0.5
1
5
10
Neutron Energy [MeV]
50
Spectrum mass-dependence
Neutron Flux [#/(MeV·sr·C)]
10
10
Li
Ta
Fe
Al
10
C
9
1
2
3
Neutron Energy [MeV]
M. Hagiwara, et al.,
4 Materials,
5
J. Nucl.
329-333, (2004) 218-22
M. Hagiwara, et al.,
J. Fusion Sci. Tech., in print
・Spectrum becomes softer with mass
Neutron Flux [#/(MeV·sr·C)]
Comparison with MCNPX; Fe, Ta
10
9
10
8
10
7
10
6
10
5
9
10
MCNPX
8
present10exp.
Fe, 110 deg.
Fe, 0 deg.
Fe, 60 deg.
10
7
10
6
10
5
4
10
9
10
4
10
8
10
8
10
7
10
7
10
6
10
6
10
5
10
5
10
4
10
4
10
9
10
Ta, 110 deg.
Ta, 110 deg.
0
Ta, 0 deg.
10
20
30
40
50 0
10
20
30
40
50 0
Neutron energy [MeV]
10
20
30
40
50
Radionuclide production
natLi(d,x)7Be
activation cross-section ,natLi(d,x)7Be activity (TTY)
lithium (IFMIF target) Ed= 40, 38.6, 29.7, 28.2, 19.7, 17.7, 10, 7.05 MeV
natLi(d,x)7Be
activation cross-section
natLi(d,x)7Be
80
107
-1
Present
IRACM XS file
B.Ja.Guzhovskij et al.
O.N.Vysotskij et al.
dps・μA ・hour
60
106
-1
Cross Section (mb)
100
activity (TTY)
40
20
0
0
10
20
30
40
Deuteron Energy (MeV)
50
Present
data with present XS
U.Von Möllendorff et al.
S.Mukhammedov et al.
P.P.Dmitriev et al.
IRACM calculation
105
104
0
10
20
30
Deuteron Energy (MeV)
40
natC(d,x)7Be
・PHITS code
(JQMD and GEM)
Cross Section (mb)
10
8
Present
PHITS calc.
6
4
2
0
20
30
40
Deuteron Energy (MeV)
50
27Al(d,x)7Be
・PHITScode
・other exps.
Cross Section (mb)
0.6
0.5
Present
U.Martens et al.
PHITS calc.
0.4
0.3
0.2
0.1
0
20
30
40
Deuteron Energy (MeV)
50
27Al(d,x)24Na
・PHITS code
・Other Exps.
・Recommendation
Cross Section (mb)
80
60
40
20
・PHITS code
・Other Exps.
・Recommendation
Cross Section (mb)
0
0
27Al(d,x)22Na
Present
IAEA recomend
S.Takacs et al.
U.Martens et al.
PHITS calc.
20
10
20
30
40
Deuteron Energy (MeV)
Present
IAEA recomend
S.Takacs et al.
U.Martens et al.
PHITS calc.
10
0
20
30
Deuteron Energy (MeV)
40
50
1010
activity (TTY)
-1
27Al(d,x)24Na
dpa・A ・hour
-1
Estimation
natC(d,x)7Be
activity (TTY)
・compare with IAEA
Al(d,x) 24
Na Present estimation
24
Al(d,x)7 Na Estimation with IAEA data
C(d,x) Be Present estimation
Al(d,x)724Na Present TTY
C(d,x) Be Present TTY
109
108
107
106
105
104
activity (TTY)
・compare with IAEA data
-1
27Al(d,x)7Be
activity (TTY)
104
103
dpa・A ・hour
27Al(d,x)22Na
-1
10
20
30
Deuteron Energy (MeV)
40
Al(d,x) 22
Na Present estimation
22
Al(d,x) 7 Na Estimation with IAEA data
Al(d,x) Be Present estimation
Al(d,x) 22
Na Present TTY
7
Al(d,x) Be Present TTY
102
101
20
30
Deuteron Energy (MeV)
40
Fe Activation cross-section (I)
2
2
10
10
natFe(d,x)52Mn
natFe(d,x)51Cr
1
10
1
0
10
-1
10
Cross secton [mb]
10
0
10
-1
10
present 52Mn
A. Hermanne et al.
Zhao Wenrong et al.
TALYS
present 51Cr
A. Hermanne et al.
J. W. Clark et al.
TALYS
-2
10
-3
10
-2
10
-3
0
10
20
30
40
50 0
10
20
30
40
50
10
Deuteron energy [MeV]
*TALYS is a nuclear reaction program using update code parameter created at NRG Petten.
Fe Activation cross-section (II)
natFe(d,x)57Co
Cross section [mb]
10
natFe(d,x)58Co
present 58Co
J. W. Clark et al.
Zhao Wenrong et al.
TALYS
2
10
2
10
1
10
0
natFe(d,x)56Co
10
1
present 56Co
J. W. Clark et al.
Zhao Wenrong et al.
P. Jung
IAEA recommend
TALYS
10
present 57Co
A. Hermanne et al.
J. W. Clark et al.
S. Takacs et al.
TALYS
0
0
10 20 30 40 50 0
10 20 30 40 50 0
Deuteron energy [MeV]
10
20
30
40
Summary & Future
1.Measurements of neutron spectrum for (d,nx) reactions
1) Li,Be, C,Al,Fe,Cu,Ta
- Ed=40, 25 MeV, - 0~110 deg
- Energy spectrum shape was clarified, high energy tail
2) Systematics vs target mass
2. Production yields of radio-nuclides via (d,x) reaction
1) Li,C,Al,Fe,Cu,Ta
 Provided data base for IFMIF optimization &
post irradiation analysis
Future program:
Deuteron induced reactions & neutron induced reactions
* CDCC (Continuum-discritized coupled-channel) model; BRC
* Extended Serber model ?
CYRIC new neutron course (@TR3 extension)
Neutron yeild [sr-1MeV-1C-1]
3~100 A
p beam
[×109]
2
7Li(p,n)
beam dump
En=75 [MeV]
En=65 [MeV]
En=55 [MeV]
1
74 cm
0
0
20
40
60
80
Neutron Energy [MeV]
Ep = 50 MeV, E = 2 MeV
mono-E n flux
106 n/cm2sA
• Software error rate
• n-induced activation, reaction
few-body reactions, etc.
Reference




















[1] IFMIF CDA TEAM, IFMIF Conceptual Design Activity Final Report edited by Marcello Martone, Report 96.11,
Enea, Dipartimento Energia, Frascati (1996)
[2] M.A.Lone et al., Nucl. Instrum. Methods, 143 (1977) 331
[3] M. Baba, T. Aoki, M. Hagiwara et al., J. Nucl. Materials 307-311 (2002) 1715-1718.
[4] T. Aoki, M. Hagiwara, M. Baba et al., J. Nucl. Sci. and Tech. to be published
[5] A.Terakawa et al., Nucl. Instrum. Methods A 491 (2002) 419.
[6] M. Baba, H. Wakabayashi, M. Ishikawa, T. Ito and N. Hirakawa, J. Nucl. Sci. Technol., 27(No.7), 601 (1990)
[7] T. Aoki , M. Baba, S. Yonai, N. Kawata, M. Hagiwara, T. Miura, T. Nakamura, Nucl. Sci. Eng., in print
[8] J. F. Ziegler, J. P, Biersack, U. Littmark, Pergamon Press, New York (1984).
[9] S.Meigo Nucl. Instrum. Methods in Physics Research A 401 (1997) 365
[10] M. B. Chadwick, P. G. Young et al., Nucl. Sci. Eng. 131, 293, 1999
[11] W.Nelson, H.Hirayama, D.W.O.Rogers, “The EGS4 Code System” SLAC-265, Stanford University, Stanford
(1985)
[12] W. Q. Shen, B. Wang, J. Feng, W. L. Zhan, Y. T. Zhu and E. P. Feng, Nucl. Phys. A, 491, 130 (1989)
[13] J. P. Meulders et al. Phys. Med. Biol., 20, p.235, 1975
[14] Z. Radivojevic, A. Honkanen, J. Aysto, V. Lyapin, V. Rubchenya, W. H. Trzaska, D. Vakhtin and G. Walter, Nucl.
Instr. and Meth. B., 183, p.212, 2001
[15] S.P.Simakov, U.Fisher, U.von Mllendorf, I.Schmuck, A.Yu.Konobeev, Yu. A. Korvin, P.Pereslavtsev; J. Nucl.
Materials, 307-311 1710-1714 (2002)
[16] S. Takacs, F. Szelecsenyi, F. Tarkanyi, M. Sonck, A. Hermanne, Yu. Shubin, A. Dityuk, M.G. Mustafa, Z. Youxiang,
Nucl. Instr. and Meth. B., 174 (2001) 235-258
[17] U. Martens and G. W. Schweimer, Zeitschrift für Physics 233 (1970) 170
[18] IAEA, Charged-particle cross section database for medical radioisotope production
http://www-nds.iaea.org/medical/
[19] H. Iwase, K. Niita, T. Nakamura, J. Nucl. Sci. Tech. 39, No.11, 1142 (2002)
Differential TTY of
natC: 12C(p,n), 13C(p,n)
Ep=50 MeV
1014
1013
LA 150_0 deg.×100
LA 150_30 deg.×10
LA 150_60 deg.×1
LA 150_90 deg.×0.1
LA 150_110 deg.×0.01
0 deg.×100
30 deg.×10
60 deg.
90 deg.×0.1
110 deg.×0.01
1.E+11
Points :Present
Solid line:LA150
0-deg*1000
15-deg*100
30-deg*10
45-deg
60-deg*0.1
90-deg*0.01
1.E+10
1.E+09
1011
Neutron Y iels [neutron/M eV /sr/μC]
Neutron yields [MeV-1sr-1C-1]
1012
Ep=70 MeV
1010
109
8
10
107
106
105
1.E+08
1.E+07
1.E+06
1.E+05
1.E+04
4
10
1.E+03
103
102
0
10
20
30
40
Neutron energy [MeV]
50
1.E+02
0
10
20
30
40
Energy [M eV ]
50
60
70
3. Differential TTY (Thick target neutron yield)
・Scarcity of experimental data for whole spectrum
“Measurement of full energy range ”
・Target: 30-mm-diam x full stop thickness
0-110 deg.,
・Efficiency; SCINFUL-R
Correction; Attenuation in target, air
・Comparison with LA-150
t
2 



d

E

dE
/
dt
dt

2
0
0
T
d Y E0 


 N
0
dEd
dEd
t


 exp N nonel E0   dE / dt dt   dt'
0

t 

TTY: W(p,n)
natEp=50
1014
1013
12
0度×100
30度×10
60度×1
90度×0.1
110度×0.01
LA 150_0度×100
LA 150_30度×10
LA 150_60度×1
LA 150_90度×0.1
LA 150_110度×0.01
Ep=70 MeV
1.E+13
Points :Present
Solid line:LA150
0-deg*1000
15-deg*100
30-deg*10
45-deg
60-deg*0.1
90-deg*0.01
1.E+12
1.E+11
1011
Neutron Y iels [neutron/M eV /sr/μC]
Neutron yields [MeV-1sr-1C-1]
10
W(p,xn)MeV
spectra
1010
109
8
10
107
106
105
1.E+10
1.E+09
1.E+08
1.E+07
1.E+06
4
10
1.E+05
103
102
0
10
20
30
40
Neutron energy [MeV]
50
1.E+04
0
10
20
30
40
Energy [M eV ]
50
60
70
Cross section [mb]
100
Neutron-induced activation X-section
10
1
14N(n,2n)13N
PHITS
INC/GEM
EXFOR data
ENDF/B-VI
0.1
0
10
20
30
40
50
60
70
80
90
Neutron energy [MeV]
Cross section [mb]
100
10
1
1 6 O(n ,2 n )1 5 O
PHITS
INC/ GEM
EXFOR data
ENDF/ B- VI
0.1
0
10
20
30
40
50
Ne u tron e n e rgy [Me V]
60
70
80
90
1. はじめに (4)
目 的
1. IFMIF加速器構成材核種の(d,n)中性子スペクトルの測定
・Li, C, Al, (Fe, Cu)
・Ed=25- 40 MeV, 0 – 90゜
・厚いターゲット,薄いターゲット
・スペクトルの全範囲の測定
2. IFMIF加速器構成材核種と重陽子反応による放射性核種生成
・Li, C, Al, (Fe, Cu)
・厚いターゲット,薄いターゲット
・スタックターゲット法による励起関数の導出
・7Be, (3H), , 24Na, 24Na
3.実験
1.東北大学サイクロトロン
・第五ターゲット室,
・ビームチョッパー
・ビームスウィンガー+飛行管室;
高いエネルギー分解能, S/N比,広いスペクトル範囲
2. スタックターゲットの利用
・厚いターゲットと薄いターゲットの対する同時測定
・中性子スペクトル,放射化の同時測定
INTRODUCTION(2)
n+28Si (LA150)