Transcript Slide 1
Bulk and Interface Properties of Winter season Multilayer Systems Edson Passamani Caetano 530 km Universidade Federal do Espírito Santo Physics Departament/Espírito Santo/Vitória/Brazil Outline Introduction • Thin films/Multilayers • Relevant discorverings in multilayers Studied problems • Non-collinear magnetic coupling • Exchange bias effect Sample preparations • Fe/Mn/Fe trilayers (MBE) • FeNi/FeMn/FeNi trilayers (Sputtering) Mössbauer results • Fe/Mn/Fe trilayers • FeNi/FeMn/FeNi trilayers General Remarks Thin films/Multilayers System with one of its dimension in nanometer scale If the effusion cells can be independently controlled material A materials A+B substrate substrate substrate Relevant Discoverings in Multilayers From especial issue of J3M (1999) ~1400 Exchange bias + Spin-Valves RKKY GMR AFM Coupling Studied Systems Influence of interfacial roughness/alloy on the: (i) Non-collinear coupling of Fe/Mn/Fe trilayers (ii) EB effect in FeNi/FeMn/FeNi trilayers Fe How do Fe layers interact in the simplest multilayer system? AFM Fe Wegded-sample: Fe(10nm)/Cr(xnm)/Fe(10nm) FM 90o AFM 90o FM AFM 90o FM M1 upper Fe M2 lower Fe Pictures from Grunberg´s group Yan et al. have found non-collinear coupling in Fe/Mn/Fe (PRB 59 (1999)) Fe (5nm) Mn 0.5 nm 0.9 nm Fe(5nm) 1.4 nm Sample preparation : MBE (KULeuven) Vacuum during the deposition 6x10-11 mbar 57Fe (1nm) deposited in both interfaces with 0.07 Å/s 4 up to 9 nm – natFe Rate of 0.16 Å/s (lower layer) or MgO(001) Ag(100nm) MgO(001) Substrate temperature (Ts) = 50-175 ºC Si – 8 nm natFe 4 nm Mn (x nm) deposited with 0.04 Å/s MgO (001) Experimental Characterization Methods Structural characterization • Reflection High Energy Electron Diffraction (RHEED) – [KULeuven] • Rutherford Back-Scaterring (RBS) – [KULeuven] •X-ray Diffraction (low and high angles) – [KULeuven] Magnetic Characterization • VSM and PPMS – [KULeuven and UFES/Brazil] • X-ray Magnetic Circular Dicroism (XMCD) – [LNLS/Brazil] • Ferromagnetic Ressonance (FMR) – [UFG/Brazil] Hyperfine Characterization • Conversion Electron Mössbauer Spectroscopy (CEMS) – [KU Leuven and UFES/Brazil] Mössbauer Spectroscopy M L K 10% 14.4 keV 100% 14.4 keV 90% +3/2 +1/2 -1/2 -3/2 +1/2 -1/2 e80% 7.3 keV 57Fe nucleus Mn γ-rays direction Ideal interface Transmission mode Contagem (u.a.) (a.u.) Relative transmission 57Fe 1,0 0,5 -10 -8 -6 -4 -2 0 2 4 6 8 10 Energia = f(v) (mm/s) V(mm/s) Interface Bhf 1,35 57Fe Emission mode 5 2 1,30 6 Relative emission 1 Emissão Relativa 1,25 Bhfbulk (natFe layer) 57 Fe 1,20 1,15 4 3 1,10 1,05 1,00 -8 MgO(001) -6 -4 -2 0 2 V (mm/s) Velocidade mm/s 4 6 8 MgO/Fe(5nm)/Mn(0.5nm)/Fe(5nm) prepared at different Ts Trilayers ((a);(b);(c)) Trilayers ((a);(b);(c)) 0 T =1500C TSS=1500C 40 Trilayers ((a);(b);(c)) 2% 2% 2% TS=150 C Si(8nm) Si(8nm) Si(8nm) nat nat natFe(4nm) Fe(4nm) Fe(4nm)Si 35 nat nat nat Fe(4nm) Fe(4nm) P(B ) P(B P(B hf )) hf hf 30 0 TS=50 =500C C T S 0 25 MgO(001) MgO(001) Bilayer ((d)) MgO(001) Bilayer ((d)) Si(8nm) Si(8nm) 57Fe 20 0 TS=500C 0 nat TS=50 C S 1% 1%1% Relative intensity Relative intensity intensity bulkRelative Fe fraction (%) 0 TS=100 =1000C C T S Mn Si Fe(4nm) nat nat Fe(4nm) MgO(001) 15 -8 40-6 -4 -8 -8 -4 -4 -6 -6 0 2 4 6 8 0 60-2 80 100 120 o -2V (mm/s) 0 2Growth 4 temperature 6 8 (0 C) -2 0 V V (mm/s) (mm/s) 2 4 6 8 0 8 16 14024 32 8 8 B (T)24 16 16 hf 24 32 32 Bhf(T) (T) B hf 160 MgO(001) MgO(001) 57 Mn(tMn=0.5nm) Fe(1nm) MgO(001) Mn(tMn=0.5nm) =0.5nm) Mn(t Mn 57 57 Fe(1nm) Fe(1nm) TS=150 C TS=175 C 0,0 MgO/Ag/(100nm)/Fe(10nm)/Mn(x nm)/Fe(5nm) -0,5 1.0 nm direction ETx==EField anistopry + EZeeman + Eexchange (b) -1,0 -1,0 M/Ms 1,0 x=1.0 nm 0,0 0,5 -0,5 TT =150 C0 S S=50 C 0,5 1,0 -0,2 Coupling energy 0 -0,5 -1,0 -0.3 -0,10 0.3 - -0,05 0,2 0 TS=50 C Eexch C C ( ) 0,0 (e) 1.4 nm 0,1 -0,1 x =0,0 2 M/MS M/Ms Magnetometry: Field Applied // to the Film Plane 0,5 C (c) C C 0,00 0,05 0,10 0 0.3 0 μoH(T) 0.3 2 (f) -0,10 -0.1 -0,05 0,00 0 0H(T) Applied magnetic field (T) botton Fe layer top Fe layer 0,05 0,10 0.1 MgO/Ag(100nm) substrate (TS = 50o C) x=1.0 nm Upper Fe layer Lower Fe layer P(Bhf) Relative intensity θ=470 x=1.4 nm θ~900 -8 -6 -4 -2 0 V(mm/s) 2 4 6 8 10 20 Bhf(T) 30 40 MgO/Ag(100nm)/Fe(10nm)/Mn(1nm)/Fe(5nm) TS=50oC Relative intensity 38% of bulk α-Fe -8 =47o -6 -4 -2 0 2 4 6 8 Velocity(mm/s) MgO/Fe(5nm)/Mn(1nm)/Fe(5nm) 17 % of bulk α-Fe =72o TS=150oC 2nd problem to be shown EB effect EB effect Shifting of the M(H) curve along field axis Hc1 Hc2 Heb= [HC1–HC2]/2 Meiklejohn and Bean JAP 33 (1962) 1328 Sample preparation: Sputtering (CBPF) Py=Ni80Fe20 WTi (10nm) Py (10nm) FeMn (15 nm) Py (30 nm) WTi (10nm) FM AFM FM Deposition conditions: Vacuum: 5 x 10-8 Torr Argon working pressure (PW): 2, 5 and 10 mTorr; Applied field during deposition ( 460 Oe) TS: 20 oC Si (100) Samples: A2, A5 and A10 PW= 2, 5 and 10 mTorr Interfacial effect/EB system Heb values increase with roughness [Uyama et al., J. Magn. Soc. Jpn. 21 (1997) 911] Heb values reduce with roughness [Nogués et al., PRB 59 (1999) 6984] Samples: A2, A5 and A10 PW= 2, 5 and 10 mTorr Relative intensity (a.u.) X-ray Reflectivity data 1000000 100000 10000 1000 100 10 1 0,1 A10 1000000 100000 10000 1000 100 10 1 0,1 A5 1000000 100000 10000 1000 100 10 1 0,1 0,01 A2 0 1 2 3 4 2 (degree) 5 6 7 8 Si/WTi/Py(30)/FeMn(15)/Py(10)/WTi PW= 2, 5 and 10 mTorr (A2, A5 and A10) X-ray Reflectivity results Sample Thickness and roughness (nm) from the fits A2 Py(30.5)/0.3/FeMn(13.6)/0.7/Py(10.1) A5 Py(30.6)/0.8/FeMn(13.8)/1.1/Py(10.3) A10 Py(30.2)/1.0/FeMn(13.1)/2.7/Py(10.1) Py Upper Interface FeMn Py Lower interface Samples: A2 and A10 PW= 2 and 10 mTorr 800 Heb1 600 A2 3 M (emu/cm ) 400 A10 200 0 -200 -400 Heb2 -600 -800 -200 -100 0 H (Oe) 100 200 Si/WTi/Py(30)/FeMn(15)/Py(10)/WTi PW= 2, 5 and 10 mTorr (A2, A5 and A10) Magnetometry Sample Heb1 (Oe) HC1(Oe) Heb2(Oe) HC2(Oe) A2 41.4 3.1 116.1 8.4 A5 25.7 3.7 101.6 11.2 A10 29.0 5.5 62.4 20 Heb values decrease while Hc values increase with roughness Si/WTi(10)/Py(30)/FeMn(15)/Py(10)/WTi(10) PW= 2, 5 and 10 mTorr (A2, A5 and A10) A5 22 24 26 28 30 32 34 Bhf (T) -6 2 4 6 8 0 2 4 6 8 0 2 4 6 8 P (Bhf) P (Bhf) A2 22 24 26 28 30 32 34 -9 0 P (Bhf) P (Bhf) Relative emission 22 24 26 28 30 32 34 0.2 % P (Bhf) P (Bhf) A10 Bhf (T) -3 0 V (mm/s) 3 6 9 Hyperfine parameters Calculated fraction Fe50Mn50 48% Ni80Fe20 52% Components Ni80Fe20 (Py) FeMn + AFM and/or PM interface phases FM interfacial alloy Hyperfine parameters Samples A2 A5 A10 Bhf (T) 29 2 29 1 28 2 (mm/s) 0.04 0.05 0.05 0.01 -0.02 0.09 A% 44 39 35 A% 56 57 58 Bhf (T) - 16.6 0.1 16.2 0.4 (mm/s) - -0.08 0.01 -0.06 0.01 A% - 4 7 “chemical roughness (alloy) ” exceeds the interfacial roughness Proposal model Transversal view NiFe WTi (10nm) Py (10nm) FeMn (15 nm) Rich- Fe – phase from the NiFe (sextet) Ni Fe Mn Roughness and/or alloy Py (30 nm) FeMn WTi (10nm) AFM (FeMn + (NiFe)xMny) FM phase at the interface Si (100) Fase PM At the interface NiFe General Remarks • Bulk magnetic properties of multilayer systems are intrinsically associated with their interface properties. • In trilayer systems, the upper interface is usually rougher than the lower one. In addition, the “chemical roughness (alloy)” is in general larger than the interfacial/surface roughness. • The magnetic coupling angles in Fe/Mn/Fe trilayers are related to their interfacial roughnesses and therefore it is not due to the quasi-helicoidal AFM state of Mn layer in the trilayer. • The Py/FeMn/Py trilayers Heb 1/roughness and HC roughness. Theirs values are intrinsically related to the fraction of each Mössbauer component. UFES KULeuven CBPF IF - UFG Prof. Dr. André Vantomme (KULeuven-Belgium) Prof. Dr. Elisa Baggio-Saitovitch (CBPF/Brazil) Prof. Dr. Fernando Pelegrini (IFG/Brazil) Dr. Bart de Groot (KULeuven-Belgium) Dr. Bart Croonenborghs (KULeuven-Belgium) Dr. Valberto Pedruzi Nascimento (CBPF/Brazil) MSc. Breno Segatto (UFES/Brazil) MSc. Francisco Almeida (KULeuven-Belgium) Sponsors: Thank you! Magnetic structure model Spins FM planar Ni(+)FeMn H direction during deposition Spins AFM planares FeMn Spins AFM planar NiFeMn Spins FM perpendicular NiFe Spins non-colinear NiFe phase FM x Frustation PM clusters x x x phase PM and AFM (FeMn and NiFeMn)