Transcript Slide 1
Beam Transport Elaborate system of vacuum beam lines transports chargedparticle beam from accelerator to experimental site Beam optics: mainly magnetic elements, function like lenses and prisms for optical beams, change propagation direction, focus. x x x x x Effect of beam elements on phase space profile x , y , z ; x , y , z x shape of beam profile in phase space can be changed, not the density (Liouville’s Theorem) Active Beam Elements •Dipole magnets change beam direction. •Quadrupole magnets focus and defocus, used in pairs. •Sextupole magnets make higher order focusing corrections. Modeling of beam line performance is done in matrix formulation in phase space of charged particle. Combinations of such elements are used for beam transport to experimental sites and as magnetic analyzers/filters/spectrometers. Magnetic Quadrupole Lens z x q: charge s: average particle path (projection) along Q optical axis 4 magnetic poles, focusing element, forces increase with r. M axw ell equations for B field B 0 B V , V 0 B 0 Solutio ns : V ( s , x , z ) G ( s ) x z Bx V x G (s) z Bz G (s) x E quations of m otion m s 0 since p m v m s const mx q s Bz q s G (s) x mz q s B x q s G (s ) z opposite signs Ideal Thin Quadrupole Lens 2 incoming particle d x ds x(s=0) 0 f x< 0 s dx fx L: Lens thickness qG L fz s ds Slope is proportional to x ( s 0) p 2 x x q p q 2 L 2 L 2 q G (s) x p ds G (s) x(s) G (0 ) x (0 ) L tan p th in len s a p p ro xim a tio n focus and defocus in x and z focal length Convex lens: fx > 0 Concave lens: fx < 0 Set fx =|fx| q·G focus defocus >0 z x <0 x z Matrix Formulation of Beam Transport Approximation here: small x, z, decoupled x-z motion Phase space trajectory made up of points (x,..) and directions (x’=dx/ds,…) of drift. x(s) u (s) s x ( s ) u 2 ( s ) ( s , f , ..) u 1 ( s ) E xam ple : thin quadrupole x 2 x1 fx | f x | x 2 x 1 x 1 f x is represented by s, f x Q f focusing in x 1 s fx 0 1 1 Qd s fx defocusing in x 0 1 Free Drift T ranslation s s 1 1 D r (s ) 0 x x1 1 u1 u 2 D r ( s ) u1 0 x1s s s x1 x1 x1 s u2 x1s 1 x1s Drift spaces make visible the effect of active beam elements see MathCad BeamTransp program u1 = (x,0) x’ = 0, no divergence u2 = Dr(550cm)u1 s Quadrupole Focusing Action 0 x1 u1 x s 1 1 F ocusing w ith focal length f 1 Q f (s , f ) s f 1 u1 u 2 Q f ( s , f ) u1 s f x1 0 x1 u2 1 x1s s f x1 x1s x The larger x, the more negative the slope. Defocus: f -f u1 = (x,0) x’=0, parallel to nominal trajectory u2 = Dr(100cm)u1 u3 = Dr(250)Qf(100)u2 s Quadrupole Defocusing Action D efocusing w ith focal length f 1 u1 u 2 Q d ( s , f ) u1 s f 1 Q d (s , f ) s f 0 x1 u1 x s 1 1 x1 0 x1 u2 1 x1s s f x1 x1s x The larger x, the more negative the slope. Defocus: f -f Quadrupole pairs: Qf·Qd u1 = (x,0) parallel entry u2 = Dr(100cm)u1 s u3 = Dr(250)Qd(100)u2 Sector Magnet s y z r z B eta tro n s x o scilla tio n z zz 0 2 z n 0 2 L " W ave vector " k z s z t k s z ( s ) z 0 cos ks ( z 0 k ) sin ks 0 Matrix representation of bending magnet in z-direction: (1 ks ) sin kL ; cos kL qB m tan z 0 s z ( s ) ksz 0 sin ks sz 0 cos ks cos kL BM ks sin kL 2 z u (s) sz Bending Magnet B ending cos kL BM ks sin kL sin kL ks cos kL z1 cos kL z k sin kL z1 u1 u 2 B M u1 z s 1 ksz1 sin kL sz 1 cos kL z N S u1 = (z,0), z’=0, parallel u2 = Dr(100cm)u1 u3 = Dr(200)BM.u2 u3 = Dr(250)Qf(100)u2 s Using Beam Transport Elements in Mass Spectroscopy Used with ISOL target to measure exotic reaction product new nuclides are nuclei produced in high DRAGON charge states (TRIUMF/Canada) good mass resolution 12 Combination Wien Filter - TOF 2 sets of magnetic and electric dipoles, MCP TOF system in focal plane L o re n tz fo rce F q v B E m a tch e d E B f (v ) W ie n F ilte r B: r p qB mv qB Nuclear Masses TO F : v , m, K Princ. accuracy Abs : Rel : W. Udo Schröder, 2004 m m m m 10 5 10 8