Collision Times and Stress in Gravity Driven Granular Flow

Download Report

Transcript Collision Times and Stress in Gravity Driven Granular Flow

Simulations of Collision Times and Stress
In Gravity Driven Granular Flow
John Drozd
Colin Denniston
•
•
•
•
bottom sieve
particles at bottom go to top
reflecting left and right walls
periodic or reflecting front
and back walls
3d simulation 
Snapshot of 2d simulation from paper:
“Dynamics and stress in gravity-driven
granular flow”
Phys. Rev. E. Vol. 59, No. 3, March 1999
Colin Denniston and Hao Li
Outline
•
•
•
•
•
•
Profiles
Mechanics
Stress
Momentum
Impulse
Collision times
Velocity
Collision rules for dry granular media as
modelled by inelastic hard spheres
r1
q
 r1'   r1  1
 1 1   r1  q 

      1   v n 
 1  1  r  q  q
 r '   r  2

 2 
 2  2
T he velocit ydependentcoefficient of restitution  v n 
determinestheenergy loss :
0.7

v 
1  1   0  n  , v n  v 0
 v n   
 v0 

0 ,
vn  v0


v2  v1   qˆ
0 
v 2  v1   qˆ
 1 , v 0  ga
Energyis dissipated.
r2
300 (free fall region)
250 (fluid region)
200 (glass region)
150
300 (free fall region)
Y Velocity
Distribution
vy
4
3
2
Poiseuille flow
1
a y 250
0 5 10 15 20 25 30
x
250 (fluid region)
2
vy
1.5
Plug flow
1
0.5 b y 200
200 (glass region)
0 5 1015202530
x
2
vy
1.5
1
kink
fracture
0.5 c y 150
0 5 1015202530
x
150
300 (free fall region)
y 250
Granular
Temperature
vx2
28
vy
30
vy 2
32
fluid
26
250 (fluid region)
24
5
10
15
20
x
y 235
2
25
30
235 (At Equilibrium
Temperature)
vx2
1.75
1.5
vy 2
1.25
1
0.75
200 (glass region)
vy
equilibrium
0.5
0.25
0
15
20
x
y 200
25
30
3
2
1
vx2
7
6
5
4
0.35
vy 2
0.4
0.3
vy
12
vx2
2
vy
10
x 16
8
vy
5
0.25
150
glass
0.2
0
100
200
y
300
400
5
10
15
20
x
25
30
Fluctuating and Flow Velocity
Experiment by
N. Menon and D. J. Durian,
Science, 275, 1997.
 v v
1
0.5
2/3
flow
v2
vy2
0.2
0.1
Simulation results
by summer student
0.05
0.02
Nehal Al Tarhuni
0.01
0.5
1
2
vy
vf
5
10
Momentum Conservation
kik+gi = t(vi)+k(vivk)
Normal Stresses Along Height
kik+gi = 0, vv
 x yx   y yy   g
0
2
yy
4
6
8
10
12
0
Weight not supported
by a pressure gradient.
100
 y yy
200
y
x
300
0
400
Momentum Conservation
3
y y y,
2
1
0
1
x yx
xy
g
y 100
 x yx   y yy   g
2
3
5
 x xy
10 15 20 25 30
x
y
y 100
0.25
0.2
0.15
0.1
0.05
5
10 15 20 25
x
 0 Weightsupportedby shear stress
Shear Stress
 xy
1
1
ˆ q
ˆ  xˆ q
ˆ  yˆ 

 1    r1  r2   q

t collisions 2
1
ˆ q
ˆ  xˆ q
ˆ  yˆ 
  f c 1   r1  r2   q
2
y 100
y 100
3
0.02
2
0.01
q.x q.y
xy
1
0
0
1
0.01
2
0.02
3
5
10 15 20 25 30
x
slope 0.15554674  x xy
5 10 15 20 25 30
x
slope  0.00165986
1
ratio of slopes   fc 1    (r1  r2 )  q
2
Experimental data from the book:
“Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials”
By Jacques Duran.
Related to Forces:
Impulse Distribution
Simulation 
Impulse defined:
Magnitude of
velocity
after collision
minus velocity before
collision.
Experiment 
(Longhi, Easwar)
Quasi-1d Theory 
(Coppersmith, et al)
Most frequent collisions
contributing to smallest
impulses
Distribution of Impulses from "spheres in 2d" simulation
1
glassy region
0.5
0
Log10 P I
0.5
1
fluid region
1.5
Upturn in glassy region
Downturn in fluid region
2
2.5
0.2
0.4
0.6
Log10 I
0.8
1
Collision time distribution
P(t) = probability that a molecule survives a
time t without collision
P(t)
1
?
0
t
dt
w dt = the probability that a molecule suffers a collision between time t and t+dt
w is independent of past history (assumption of molecular chaos)
Hence
P(t+dt) = P(t) [probability that molecule
avoids collision in interval dt]
= P(t) (1- w dt)
Thus
P(t ) 
dP
dt  P(t )  P(t ) w dt
dt
P t
1
or
1 dP
 w
P dt
0.8
0.6
0.4
So that
0.2
P(t )  e
 wt
The “collision time” or “relaxation time” is
1

w
0.5
1
1.5
2
2.5
3
t
N
Power Laws for Collision Times
1.
10 8
1.
10 6
10000
100
Collision time
= time between
collisions
2d disks
spheres
1) 2d3ddisks
2) spheres in 2d
3) 3d spheres
1
0.005 0.01
0.05
0.1
0.5
1
N   
polydispese
r grains
 (2d disks / spheresin 2d)  2.75/2.85
 (3d spheres) 3.4

Similar power laws for 2d and 3d simulations!
Comparison With Experiment
: experiment 1.5 vs. simulation 2.7
Discrepancy as a result of
Experimental response time and
sensitivity of detector.
 Experiment
Pressure Transducer
“Spheres in 2d”:
3d Simulation with
front and back
reflecting walls
separated one
diameter apart 

Figure from experimental paper:
“Large Force Fluctuations in a Flowing Granular Medium”
Phys. Rev. Lett. 89, 045501 (2002)
E. Longhi, N. Easwar, N. Menon
N    
5
ln I
10
15
20
20
15
10
ln
5
0
5
1. 108
 = 2.9 0.2  2.7
100
0.01
0.0001
10
1. 10
Wall collisions only
N
PI
1
1.
6
1) grain grain
2) grain wall
10000
100
 = 1.7  0.2  1.5
6
1
10
100
I
1000
10000
1
0.0001
0.001
0.01
0.1
1
random packing
at early stage
 = 2.75
Is there any
difference between
this glass and a solid?
Answer: Look at
Monodisperse grains
crystallization 
at later stage
 = 4.3
Disorder has a universal effect on
Collsion Time power law.
Summary of Power Laws
Radius
Polydispersity
0%
(monodisperse)
2d disks
Spheres in 2d
3d spheres
4
4.3
3.4
7.5 %
(polydisperse)
2.75
2.85
3.4
15 %
(polydisperse)
2.75
2.85
3.4
Conclusions
• Power laws dependent on disorder.
• Using power laws can differentiate
between granular fluid and glass.
• Can differentiate between granular
glass and solid! Is this universal?
Not done before!
• Dynamics (collision directions) lead to
static stresses.
Future Work
• Plot impulse distributions along height for 3d
simulation to fully compare to 2D results
• Power law for distances between collisions
• Viscosity vs. Temperature power law
(Lubensky)
• Constitutive stress relations (Cates)
• Chaos and diffusion
(3D Tetrahedral Voronoi cells)
• Heat flux analysis for 3D simulation
THE END