Transcript Convection

Convection: Parcel Theory

Chapt. 4 page 48.

• Vertical motion of parcels of air.

• Buoyant convection leads to the formation of cumulus clouds (though other clouds have convective features).

• Parcel theory is an elementary treatment, but useful for qualitative understanding.

Copyright © 2009 R. R. Dickerson & Z.Q. Li 1

Parcel Theory Assumptions

• Parcel and environment are in dynamic equilibrium: P = P’.

• Parcel maintains its identity; no mixing with environment.

• Atmosphere in hydrostatic equilibrium.

• No compensating motion by atmosphere as parcel moves.

Copyright © 2009 R. R. Dickerson & Z.Q. Li 2

Parcel theory equations:

z

 

d

2

z dt

2 

g

(

T

T

'

T

' )

Primes: environmental properties.

You can correct for the effect of moisture on density by using virtual temperature wherever T appears here.

Let B be buoyancy.

or

z

 

gB with B

T

T

T

 Copyright © 2009 R. R. Dickerson & Z.Q. Li 3

Designate updraft velocity then

z

 

dU dt and

z

 

U dU dz

gB so

U

dz dt dt

dz U UdU

gBdz U

2 

U o

2  2

g z

z B

(

z

)

dz

& Z.Q. Li 4

Alternate formulation using >> d P

    

g dz

 = P’/R’T’ and dP’ =  gdz 2

g o z

z B

(

z

)

dz

  2

g o p

p

(

T

T

T

 ) 

R T

d P

P

g

  2

R

p p

0 (

T

T

 )

d P

P

U

2 

U o

2  2

R p

0 

p

(

T

T

 )

d P

P

 Copyright © 2009 R. R. Dickerson & Z.Q. Li 5

-RlnP T’

(environment)

Parcel process curve T Hatched area is proportional to the kinetic energy of the parcel. Change in area from level to level represents the change in K.E.

Copyright © 2009 R. R. Dickerson & Z.Q. Li 6

Correcting for Condensed H

2

O

Let  

mass of liquid mass of air

; assume μ= total adiabatic liquid water

then

z

 

g T T

  ( 1   )   

dP

g

( 1   )

dz

Copyright © 2009 R. R. Dickerson & Z.Q. Li 7

Parcel Theory is Useful for:

• Estimating cloud base and top heights • Estimating stability • Estimating vertical motion U But we’ve neglected • Drag • Mixing • Compensating motion by environment • Effects of condensed water Therefore:

parcel theory U => expected upper limit.

Copyright © 2009 R. R. Dickerson 8 & Z.Q. Li