Transcript Slide 1

The Impact of Lateral Boundary Conditions on CMAQ
Predictions over the Continental US: a Sensitivity Study
Compared to Ozonsonde Data
Youhua Tang*, Pius Lee, Marina Tsidulko, Ho-Chun Huang,
Scientific Applications International Corporation, Camp Springs, Maryland
Jeffery T. McQueen, Geoffrey J. DiMego
NOAA/NWS/National Centers for Environmental Prediction, Camp Springs, Maryland.
Louisa K. Emmons
National Center for Atmospheric Research, Boulder, Colorado
Robert B. Pierce
NOAA/NESDIS Advanced Satellite Products Branch, Madison, Wisconsin
Hsin-Mu Lin, Daiwen Kang, Daniel Tong, Shao-cai Yu
Science and Technology Corporation, Hampton, VA.
Rohit Mathur, Jonathan E. Pleim, Tanya L. Otte, George Pouliot, Jeffrey O. Young, Kenneth L. Schere
NOAA-OAR/ARL, Research Triangle Park, NC. (On assignment to the National Exposure Research
Laboratory, U.S.E.P.A.)
and Paula M. Davidson
Office of Science and Technology, NOAA/National Weather Service, Silver Spring, MD
Objective
• Current operational CMAQ forecast over continental USA uses static
lateral boundary condition as the external influences from transport
outside the CMAQ domain are relatively weak compared to
emissions within the model domain.
• Here we try to use sensitivity study to assess the impact of using
lateral boundary conditions from global models during typical
summertime ozone episode compared to IONS (INTEX Ozonesonde Network Study) ozonesonde and EPA airnow data.
WRF-NMM/CMAQ Model Configuration
• Driven by hourly meteorological forecasts from
the operational North America Mesoscale (NAM)
WRF-NMM prediction system.
• The operational CMAQ system covering
Continental USA in 12km horizontal resolution
Carbon Bond Mechanism-4 (CBM4)
22 vertical layers up to 100hPa.
vertical diffusivity and dry deposition based on Pleim and Xu (2001),
scale J-table for photolysis attenuation due to cloud
Asymmeric Convective Scheme (ACM) (Pleim and Chang, 1992).
Global Models as CMAQ LBC Providers
MOZART
RAQMS
GFS O3
Horizontal
Resolution
2.82.8
22
0.310.31
Meteorology
GFS analysis
GFS analysis
GFS forecasts
Anthropogenic
emissions
Granier et al., 2004
GEIA/EDGAR
inventory with updated
Asian emission
(Streets et al. 2003)
Not applicable
Biomass burning
emissions
GFED-v2 (van der
Werf, 2006)
ecosystem/severity
based
Not applicable
stratospheric
ozone
synthetic ozone
constraint
(McLinden et al.,
2000)
OMI/TES assimilation
(Pierce et al., 2007)
Initialized by
SBUV-2
Input frequency
to CMAQ
Every 3 hours
Every 6 hours
hourly
VOC Species mapping tables between RAQMS/MOZART species
and CMAQ CBM-IV (other species in the same names are converted directly)
RAQMS
Species
CH3OOH (Methyl
hydroperoxide)
C2H6
OLET (terminal
alkenes)
OLEI (internal
alkenes)
CMAQ
CBM-IV
UMHP
2* PAR
OLE1+PAR
OLE2 + 2*PAR
MOZART
Species
CMAQ
CBM-IV
CH3OOH (Methyl
UMHP
hydroperoxide)
CH3CHO
ALD2
C2H6
2*PAR
C3H8
3*PAR
BIGALK (higher
alkanes)
4*PAR
C3H6
OLE + 2*PAR
BIGENE (higher
alkenes)
OLE + 3*PAR
C10H16
(terpene)
OLE + 9*PAR
Fixed LBC
MOZART
High
vertical
variability
RAQMS
GFS O3
Strong
gradient
near marine
boundary
layer
Another method
is using mean
ozonesonde
profiles as
boundary
condition
B o u ld e r 2 0 0 6 0 8 0 3 1 9 .3 3 U T C
B e lts v ille 2 0 0 6 0 8 0 3 1 7 .9 2 U T C
8000
O b s e rv e d
F ix e d B C
4000
RAQMS BC
M O ZART BC
12000
8000
O b s e rv e d
F ix e d B C
RAQMS BC
4000
M O ZART BC
G F S -O 3 B C
IO N S B C
40
60
80
100
120
140
12000
8000
O b s e rv e d
F ix e d B C
RAQMS BC
4000
M O ZART BC
G F S -O 3 B C
IO N S B C
G F S -O 3 B C
0
A ltitu d e a bo v e S e a L e v e l (m )
12000
A ltitu d e a bo v e S e a L e v e l (m )
A ltitud e a bo v e Se a L e v e l (m )
16000
16000
16000
IO N S B C
0
0
40
60
80
100
120
140
0
O 3 (p p b v)
O 3 (p p b v)
H u n ts v ille 2 0 0 6 0 8 0 3 1 7 .5 3 U T C
100
200
300
O 3 (p p b v)
B ra tt's L a k e 2 0 0 6 0 8 0 3 2 1 U T C
16000
12000
8000
O b s e rv e d
F ix e d B C
4000
RAQMS BC
M O ZART BC
A ltitu d e a bo v e S e a L e v e l (m )
16000
A ltitu d e a bo v e S e a L e v e l (m )
T rin id a d H e a d 2 0 0 6 0 8 0 3 2 1 .0 2 U T C
Model
predictions
using different
LBCs compared
to IONS
ozonesonde
12000
8000
O b s e rv e d
F ix e d B C
RAQMS BC
M O ZART BC
4000
G F S -O 3 B C
IO N S B C
G F S -O 3 B C
IO N S B C
0
0
40
60
80
O 3 (p p b v)
100
120
0
100
200
300
O 3 (p p b v)
400
500
Other O3 LBCs have higher O3 in the upper layers than the original
Fixed BC over most areas
Global models MOZART and RAQMS show better correlations
over all stations and west coast that faces major inflows.
Mean O3 Difference (ppbv) (MOZAT-BC – Fixed-BC)
Fixed-BC Predicted Mean O3 (ppbv)
Mean O3 bias (ppbv) Compared to EPA Airnow data
RAQMS
GFS O3
IONS
Mean O3 bias (ppbv) Compared to EPA Airnow data
CMAQ simulations compared to AIRNOW hourly O3 data from Aug 1 to 5
All AIRNOW Stations
West of -115W
North of 43N
Fixed BC
S=0.887 R=0.714
MB=8.0 ppbv
S=0.804 R=0.691
MB=4.7 ppbv
S=0.873 R=0.737
MB=7.5 ppbv
RAQMS BC
S=0.911 R=0.718
MB=10.0 ppbv
S=0.914 R=0.703
MB=7.1 ppbv
S=0.942 R=0.742
MB=10.0 ppbv
MOZART BC
S=0.941 R=0.716
MB=8.2 ppbv
S=0.872 R=0.730
MB=2.2 ppbv
S=0.985 R=0.743
MB=6.9 ppbv
GFS O3 BC
S=0.935 R=0.714
MB=9.2 ppbv
S=0.820 R=0.697
MB=4.8 ppbv
S=0.922 R=0.724
MB=9.0 ppbv
IONS BC
S=0.923 R=0.719
MB=11.1 ppbv
S=0.883 R=0.680
MB=10.8 ppbv
S=0.871 R=0.712
MB=11.4 ppbv
S is correlation slope, R is correlation coefficient, and MB is mean bias
Summary
• During this scenario, the impact of lateral boundary
condition is remarkable. The model predictions using
different LBC show different performances varied
from location to location.
• Full-chemistry MOZART and RAQMS LBC have the
stronger impact on surface ozone prediction than
that of GFS-O3.
• Using observed IONS ozonesonde as LBC could
work over some locations, but it tends to overpredict
surface ozone due to its relatively coarse spatial and
temporal resolutions. How the model properly handle
the observed profiles is also an issue.
Acknowledgements:
We thank Dr. Anne Thompson for INTEX Ozone-sonde Network Study
(IONS) ozonesonde data, and EPA for providing AIRNOW data.