Experimental Approaches in Meson Spectroscopy

Download Report

Transcript Experimental Approaches in Meson Spectroscopy

Open and Hidden Charm Spectroscopy with
χc2(23P2)
ψ(13D3)
3
D*D*
ηc(31S0)ψ(3 S1)
χc1(23P1)
1
ψ(13D2)
h1c(2 P1)
χc0(23P0ψ(1
) 1D 2)
DD*
ψ(13D1)
ηc(21S0)
ψ(23S1)
DD
χc2(13P2)
h1c(11P1) χ (13P )
c1
1
χc0(13P0)
J/ψ(13S1)
Klaus Peters
ηc(11S0)
Ruhr-University Bochum
Beijing, August 16-22, 2004
The GSI Future Facility
Panda
2
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Overview
The Physics Program (Panda Experiment)
Charmonium spectroscopy
Charmed hybrids and glueballs
Interaction of charmed particles with nuclei
Hypernuclei
Further options
The Antiproton Facility (HESR)
Conclusions
3
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Were do we stand ?
Perturbative QCD works for high Q2 or large mq
one gluon exchange
At low Q2
chiral limit mq0
Mass generation of hadrons is uncertain
98% of the mass of the proton is not understood
Effective theories for the limits
but lacking real understanding of the degrees of freedom
How to connect the regions?
4
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Approach
Increase precision
measure static properties of well known states
Increase the database of decays
search for unusual decay modes to gain information
Excite additional modes
search for gluonic and radial excitations of hadrons
search for gluonic excitation of the strong vacuum
Put the hadrons to the limits
put the hadrons in vacuum with different baryon density
6
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Level Mixing
Light quark problem
the mixing
10
2
Exotic light qq
Mixing
broad states
high level density
Better:
narrow states
and/or
lower level density
charmed systems !
1
10
Exotic cc
1-- 1-+
-2
0
2000
4000 2
MeV/c
7
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmonium Physics
Mcc [GeV/c2]
Peculiar ψ(4040)
8.0
4.0
ψ(33S1)
ηc(31S0)
3.9
χc2(23P2)
h1c(21P1)
DD*
3.8
Terra incognita for
2P and 1D-States
ηc’ - ψ(2S) splitting
h1c – unconfirmed
ηc – inconsistencies
3.6
ψ(13D3)
ψ(13D2)
ψ(11D2)
DD
ψ(23S1)
3.7
χc1(23P1)
χc0(23P0)
D*D*
7.1
ψ(13D1)
6.3
ηc(21S0)
χc2(13P2)
3.5
h1c(11P1) χc1(13P1)
3.4
χc0(13P0)
5.5
3.3
4.8
3.2
J/ψ(13S1)
3.1
3.0
2.9
pp [GeV/c]
Open questions …
ηc(11S0)
JP=0+
… Exclusive Channels
Helicity violation
4.1
G-Parity violation
Higher Fock state contributions
3.4
1-
1+
(0,1,2)+
2-
(1,2,3)8
K. Peters - Open and Hidden Charm Spectroscopy with Panda
The X(3872)
New state discovered by Belle in
BK (J/ψπ+π-), J/ψµ+µ- or
e+e-
X(3872) seen also by CDF
Belle, preliminary, hep-ex/0309032
signal region
sideband region
CDF, preliminary, Bauer, QWG 2003
M = 3872.0  0.6  0.5 MeV
Γ  2.3 MeV (90 % C.L.)
M = 3871.4  0.7  0.4 MeV
9
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmonium Physics
e+e- interactions:
Only 1-- states are formed
Other states only by
secondary decays
moderate mass resolution
CBall
E835
All states directly formed
very good mass resolution
cc1
1000
E 835 ev./pb
pp reactions:
CBall ev./2 MeV
100
3500
3510
3520 MeV
ECM
CBall, Edwards et al. PRL 48 (1982) 70
E835, Ambrogiani et al., PRD 62 (2000) 052002
10
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmonium Physics with pp
Expect 1-2 fb-1 (like CLEO-C)
pp (>5.5 GeV/c) J/ψ
pp (>5.5 GeV/c) χc2 (J/ψγ)
pp (>5.5 GeV/c) ηc´(ff)
107/d
105/d
104/d|rec.?
Comparison of PANDA@HESR to E835
15 GeV/c
10x higher
charged tracks
10x smaller
stable conditions
maximum mom. instead of 9 GeV/c
Luminosity than achieved before
detector with magnetic field
δp/p
dedicated high energy storage ring
12
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmed Hybrids
LQCD:
gluonic excitations of the
quark-antiquark-potential
may lead to bound states
S-potential
for one-gluon exchange
P-potential
from excited gluon flux
V(R)/GeV
Hcc
P
4
ψ‘
3.5
mHcc ~ 4.2-4.5 GeV/c2
Light charmed hybrids
could be narrow if open
charm decays are
inaccessible or suppressed
3
DD
S
χc
R/r0
J/ψ
1
2
important <r2> and rBreakup
13
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Accessible Charmed Hadrons at PANDA @ GSI
p Momentum [GeV/c]
0
2
ΛΛ
ΣΣ
ΞΞ
Two body
thresholds
Molecules
Gluonic
Excitations
4
ΩΩ
6
8
DD
DsDs
qqqq
Ω cΩ c
ccg
nng,ssg
Hybrids+Recoil
ccg
ggg,gg
Glueball
exotic
charmonium
ggg
Glueball+Recoil
qq Mesons
Λ cΛ c
ΣcΣc
ΞcΞc
ccqq
nng,ssg
Hybrids
10 12 15
light qq
π,ρ,ω,f2,K,K*
1
cc
J/ψ, ηc, χcJ
2
3
4
Mass [GeV/c2]
Other exotics with
identical decay channels  same region
conventional
charmonium
5
6
14
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Ds[J][*]± Pairproduction in pp Annihilation
Associated Pair m/MeV/c2
JP
Channel (+cc)
Final State
Ds(1968.5)
Ds (1968.5)
3937.0
0+,1-,2+,3-,4+
Ds+Ds-
2K-2K+p+p-
Ds (1968.5)
Ds*(2112.4)
4080.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(Ds-g)
2K-2K+p+p-g
Ds*(2112.4)
Ds*(2112.4)
4224.8
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-g)
2K-2K+p+p-gg
Ds (1968.5)
DsJ*(2317.5)
4286.0
0-,1+,2-,3+,4-
Ds+(Ds-p0)
2K-2K+p+p-p0
Ds (1968.5)
DsJ(2458.5)
4427.0
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+((Ds-g)p0)
2K-2K+p+p-p0g
Ds*(2112.4)
DsJ*(2317.5)
4429.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-p0)
2K-2K+p+p-p0g
Ds (1968.5)
Ds1(2535.4)
4503.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(D*-K0)
2K-K+KSp+2p-(p0)
Ds (1968.5)
DsJ*(2572.4)
4540.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(D0K-)
2K-2K+p+p-(p0)
Ds*(2112.4)
DsJ(2458.5)
4570.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)((Ds-g)p0)
2K-2K+p+p-p0gg
DsJ*(2317.5)
DsJ*(2317.5)
4635.0
0+,1-,2+,3-,4+
(Ds+p0)(Ds-p0)
2K-2K+p+p-2p0
Ds*(2112.4)
Ds1(2535.4)
4647.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(D*-K0)
2K-K+KSp+2p-(p0)g
Ds*(2112.4)
DsJ*(2572.4)
4684.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(D0K-)
2K-2K+p+p-(p0)g
Ds (1968.5)
D1*(2770)
4738.5
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(Ds-p+p-)
2K-2K+2p+2p-
DsJ*(2317.5)
DsJ(2458.5)
4776.0
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)((Ds-g)p0)
2K-2K+p+p-2p0g
Ds (1968.5)
D2(2870)
4838.5
0+,1-,1+,2-,2+,3-,3+,4-,4+
Ds+((Ds-g)p+p-)
2K-2K+2p+2p-g
DsJ*(2317.5)
Ds1(2535.4)
4852.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)(D*-K0)
2K-K+KSp+2p-(1-2)p0
Ds*(2112.4)
D1*(2770)
4882.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-p+p-)
2K-2K+2p+2p-g
DsJ*(2317.5)
DsJ*(2572.4)
4889.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)(D0K-)
2K-2K+p+p-(1-2)p0
DsJ(2458.5)
DsJ(2458.5)
4917.0
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)((Ds-g)p0)
2K-2K+p+p-2p0gg
Ds*(2112.4)
D2(2870)
4982.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)((Ds-g)p+p-)
2K-2K+2p+2p-gg
DsJ(2458.5)
Ds1(2535.4)
4993.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)(D*-K0)
2K-K+KSp+2p-(1-2)p0g
DsJ(2458.5)
DsJ*(2572.4)
5030.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)(D0K-)
2K-2K+p+p-(1-2)p0g
Ds1(2535.4)
Ds1(2535.4)
5070.8
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(D*+K0)(D*-K0)
K-K+2KS2p+2p-(0-2)p0
17
K. Peters - Open and Hidden Charm Spectroscopy with Panda
The Antiproton Facility - HESR
Antiproton production similar to CERN
HESR = High Energy Storage Ring
Production rate 107/s
Pbeam = 1.5 - 15 GeV/c
Nstored = 5 x 1010 p
Gas-Jet/Pellet/Wire Target
High luminosity mode
Luminosity
= 2 x 1032 cm-2s-1
δp/p ~ 10-4 (stochastic cooling)
High resolution mode
δp/p ~ 10-5 (electron cooling)
Luminosity
= 1031 cm-2s-1
18
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Proposed Detector (Overview)
High Rates
Total σ ~ 55 mb
peak > 107 int/s
Vertexing
(σp,KS,Λ,…)
Charged particle ID
(e±,μ±,π±,p,…)
Magnetic tracking
Elm. Calorimetry
(γ,π0,η)
Forward capabilities
(leading particles)
Sophisticated Trigger(s)
19
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Summary and Outlook
It’s an amazing time in charm spectroscopy
many new states – but no coherent picture
Where are gluonic excited charmonia (hybrids)
spectrum, widths and decay channels
What are the new DsJ states and the X(3872)
what are their properties like width and decay channels
Interaction with nuclear matter
mass shifts, broadening and attenuation
Only high precision experiments can finally
help to solve the puzzle like Panda @ HESR @ GSI
20
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Backup Slides
21
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Simplest Hybrids
S-Wave+Gluon (qq)8g with ()8=coloured
1S
0
 3S1 combined with a 1+ or 1- gluon
L
S1
S=S1+S2
S2
Gluon
1– (TM)
1+(TE)
P=(-1)L+1
1S
0,
0–+
1++
1––
C=(-1)L+S
3S
1,
1––
0+-
0–+
1+-
1–+
2+-
2–+
J=L+S
Exotic JPC cannot!
be formed by qq
22
K. Peters - Open and Hidden Charm Spectroscopy with Panda
LQCD ccg 1-+ vs. cc 1-- (J/ψ)
1-+
Model
Group
Reference
isotropic
MILC97
PRD56(1997)7039
4317 ±150
isotropic
MILC99
NPB93Supp(1999)264
4287
isotropic
JKM99
PRL82(1999)4400
anisotropic
ZSU02
hep-lat/0206012
isotropic
MILC97
PRD56(1997)7039
1220 ±150
isotropic
MILC99
NPB93Supp(1999)264
1323 ±130
anisotropic
CP-PACS99
PRL82(1999)4396
1190
isotropic
JKM99
PRL82(1999)4400
anisotropic
ZSU02
hep-lat/0206012
4390 ±80
4369 ±37
D(1-+,1--)
1340 ±80
1302 ±37
m(ccg)
±200
±99
m(ccg)- m(cc)
±200
±99
23
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmed Hybrid Level Scheme
1-- (0,1,2)-+ < 1++ (0,1,2)+JKM, NPB 83suppl(2000)304 and
Manke, PRD57(1998)3829
2+-
4.85
1++
4.81
1+-
4.70
2-+
4.52
4.5
1--
4.48
4.4
0+1-+
4.47
4.37
4.8
L-Splitting
4.7
Δm ~ 100-250 MeV/c2
for 1-+ to 0+-
4.6
S-Splittings
Page thesis,1995 and PRD 35(1987)1668
4.14 (0-+) to 4.52 GeV/c2 (2-+)
consistent w/LQCD
JKM, NPB 86suppl(2000)397,
PLB478(2000) 151
4.3
DD**
4.2
0-+
4.14
4.1
24
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmed Hadrons in Nuclear Matter
Partial restoration of chiral
symmetry in nuclear matter
Light quarks are sensitive
to quark condensate
Evidence for mass changes of
pions and kaons has been
deduced previously:
deeply bound pionic atoms
(anti-)kaon yield and phase
space distribution
D-Mesons are the QCD
analogue of the H-atom.
chiral symmetry to be studied
on a single light quark
vacuum
nuclear medium
pp
K
25 MeV
p+
K+
100 MeV
K-
D
D50 MeV
D+
Hayaski, PLB 487 (2000) 96
Morath, Lee, Weise, priv. Comm.
25
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmonium in the Nuclei
Lowering of the
D +D-
mass
GeV/c2
allow charmonium states to decay
into this channel,
thus resulting in a dramatic
increase of width
ψ(1D)
Γ=2040 MeV
ψ(2S)
Γ=0,322,7 MeV
Experiment:
Dilepton-Channels and/or highly
constrained hadronic channels
Idea
Study relative changes of
yield and width of the charmonium
states
4
3.8
Mass
y(33S1)
y(13D1)
y(23S1)
3.6
3.4
DD
vacuum
cc2(13P2)
1r0
cc1(13P1)
2r0
3,74
3,64
3,54
cc1(13P0)
3.2
y(13S1)
3
hc(11S0)
26
K. Peters - Open and Hidden Charm Spectroscopy with Panda
Charmonium mass shift in nuclear matter
Quantum
QCD
Potential
QCD
Effects of
numbers
2nd Stark eff.
model
sum rules
DD loop
ηc
0-+
–8 MeV [1]
J/ψ
1--
–8 MeV [1]
cc0,1,2
0,1,2++
-40 MeV [2]
ψ(3686)
1--
-100 MeV [2]
< 30 MeV [2]
ψ(3770)
1--
-140 MeV [2]
< 30 MeV [2]
–5 MeV [4]
-10 MeV [3]
–7 MeV [4]
< 2 MeV [5]
-60 MeV [2]
[1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355
[2] Lee, nucl-th/0310080
[3] Brodsky et al, PRL 64(1990)1011
[4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396
[5] Lee, Ko PRC 67(2003)038202
27
K. Peters - Open and Hidden Charm Spectroscopy with Panda