Charm Physics

Download Report

Transcript Charm Physics

Charm Physics
@
Klaus Peters
Ruhr-Universität Bochum and GSI Darmstadt
Beijing, Jan 14, 2004
Where is Darmstadt ?
GSI
2
K. Peters - Charm Physics @ Panda
Overview
The Panda Physics Program
Charmonium spectroscopy
Charmed hybrids and glueballs
Interaction of charmed particles with nuclei
(Double) Hypernuclei
Many further options
Detector Concepts for Panda
3
K. Peters - Charm Physics @ Panda
The GSI Future Facility
Hadron Physics
Plasma Physics
Existing GSI Facilities
Condensed
Baryonic Matter
Atomic Physics
Rare Isotope
Beams
4
K. Peters - Charm Physics @ Panda
The GSI Future Facility
Panda
5
K. Peters - Charm Physics @ Panda
The Antiproton Facility
6
K. Peters - Charm Physics @ Panda
The Antiproton Facility
Antiproton production similar to CERN,
HESR = High Energy Storage Ring
Production rate 107/sec
Pbeam
= 1.5 - 15 GeV/c
Nstored
= 5 x 1010 p
Gas-Jet/Pellet/Wire Target
High luminosity mode
Luminosity = 2 x 1032 cm-2s-1
Dp/p ~ 10-4 (stochastic cooling)
High resolution mode
Dp/p ~ 10-5 (electron cooling)
Luminosity = 1031 cm-2s-1
7
K. Peters - Charm Physics @ Panda
QCD running coupling constant
0 0.1
10
perturbative strong
QCD
mesons and baryons
confinement
constituent quark
perturbative QCD
transition from perturbative to
non-perturbative regime
0.3
Rn
1
0.1

1 r [fm]
0.05 Q2 [GeV2]

Q2
Transition from the quark-gluon to the hadronic degrees of freedom
8
K. Peters - Charm Physics @ Panda
Level Mixing
Light quark problem
the mixing
Mixing
Kaon mixing
strong interaction
C undefined K1A-K1B
Isoscalar mixing
Isospin mixing
strong interaction
IG, JPC identical η-η‘
elm interaction
ΔI=1 ρ-ω
broad states
high level density
JPC=JP+
a1
f1
f1’ K1B
JPC=JP-
b1
h1
h1’ K1A
Glueball mixing
Hybrid mixing
I=1 I=0nn I=0ss I=½
9
K. Peters - Charm Physics @ Panda
Level Mixing
Light quark problem
the mixing
10
2
Exotic light qq
Mixing
broad states
high level density
Better:
narrow states
and/or
lower level density
charmed systems !
1
10
Exotic cc
1-- 1-+
-2
0
2000
4000 2
MeV/c
10
K. Peters - Charm Physics @ Panda
Charmonium Physics
Mcc [GeV/c2]
Peculiar ψ(4040)
8.0
4.0
ψ(33S1)
ηc(31S0)
3.9
χc2(23P2)
h1c(21P1)
DD*
3.8
Terra incognita for
2P and 1D-States
ηc’ - ψ(2S) splitting
h1c – unconfirmed
ηc – inconsistencies
3.6
ψ(13D3)
ψ(13D2)
ψ(11D2)
DD
ψ(23S1)
3.7
χc1(23P1)
χc0(23P0)
D*D*
ψ(13D1)
6.3
ηc(21S0)
χc2(13P2)
3.5
h1c(11P1) χc1(13P1)
3.4
χc0(13P0)
5.5
3.3
4.8
3.2
J/ψ(13S1)
3.1
3.0
2.9
7.1
pp [GeV/c]
Open questions …
ηc(11S0)
JP=0-
… Exclusive Channels
Helicity violation
4.1
G-Parity violation
Higher Fock state contributions
3.4
1-
1+
(0,1,2)+
2-
(1,2,3)11
K. Peters - Charm Physics @ Panda
Charmonium States above the DD threshold
It is extremely important
to identify as many missing states above
the open charm threshold as possible
and to confirm the ones for which we
only have a weak evidence
This will require
high-statistics
small-step scans of the
entire energy region accessible at HESR @ GSI
12
K. Peters - Charm Physics @ Panda
Charmonium Physics
e+e- interactions:
Only 1-- states are formed
Other states only by
secondary decays
moderate mass resolution
CBall
E835
! Ã0
! ° Â c1;2
! ° ° J=Ã
! ° ° e+ e¡
pp reactions:
All states directly formed
very good mass resolution
p¹p ! Â c1;2
! ° J=Ã
! ° e+e¡
cc1
1000
E 835 ev./pb
e+ e¡
CBall ev./2 MeV
100
3500
3510
3520 MeV
ECM
CBall, Edwards et al. PRL 48 (1982) 70
E835, Ambrogiani et al., PRD 62 (2000) 052002
13
K. Peters - Charm Physics @ Panda
Resonance Scan
Resonanc
e Cross
Section
Measured
Rate
Beam
Profile
ECM
small and well controlled
beam momentum spread
Dp/p
is extremely important
14
K. Peters - Charm Physics @ Panda
Charmonium Physics with pp
Expect 1-2 fb-1 (like CLEO-C)
pp (>5.5 GeV/c) J/ψ
pp (>5.5 GeV/c) χc2 (J/ψγ)
pp (>5.5 GeV/c) ηc´(ff)
107/d
105/d
104/d|rec.?
Comparison of PANDA@HESR to E835
charged tracks
15 GeV/c
10x higher
10x smaller
stable conditions
detector with magnetic field
maximum mom. instead of 9 GeV/c
Luminosity than achieved before
δp/p
dedicated high energy storage ring
15
K. Peters - Charm Physics @ Panda
Charmed Hybrids
LQCD:
gluonic excitations of the
quark-antiquark-potential
may lead to bound states
S-potential
for one-gluon exchange
P-potential
from excited gluon flux
V(R)/GeV
Hcc
P
4
ψ‘
3.5
mHcc ~ 4.2-4.5 GeV/c2
Light charmed hybrids
could be narrow if open
charm decays are
inaccessible or suppressed
3
DD
S
χc
R/r0
J/ψ
1
2
important <r2> and rBreakup
16
K. Peters - Charm Physics @ Panda
Simplest Hybrids
S-Wave+Gluon (qq)8g with ()8=coloured
1S
0
L
S1
 3S1 combined with a 1+ or 1- gluon
S=S1+S2
S2
Gluon
1– (TM)
1+(TE)
P=(-1)L+1
1S
0,
0–+
1++
1––
C=(-1)L+S
3S
1,
1––
0+-
0–+
1+-
1–+
2+-
2–+
J=L+S
Exotic JPC cannot!
be formed by qq
17
K. Peters - Charm Physics @ Panda
Proton-Antiproton Annihilation
Formation only selected JPC
p
p
Production all JPC
available
p
p
recoil
18
K. Peters - Charm Physics @ Panda
Proton-Antiproton Annihilation
Formation only selected JPC
p
p
p
H
p
p
nng
G
H
ssg/ccg
p
Production all JPC available
p
H
p
nng
p
H
p
G
ssg/ccg
M
p
M
p
M
Gluon rich process creates gluonic excitation directly
cc requires the quarks to annihilate (no rearrangement)
yield comparable to charmonium production
even at low momenta large exotic content has been proven
19
K. Peters - Charm Physics @ Panda
Accessible Charmed Hadrons at PANDA @ GSI
p Momentum [GeV/c]
0
4
ΛΛ
ΣΣ
ΞΞ
Two body
thresholds
Molecules
Gluonic
Excitations
2
ΩΩ
6
8
DD
DsDs
qqqq
Ω cΩ c
ccg
nng,ssg
Hybrids+Recoil
ccg
ggg,gg
Glueball
exotic
charmonium
ggg
Glueball+Recoil
qq Mesons
Λ cΛ c
ΣcΣc
ΞcΞc
ccqq
nng,ssg
Hybrids
10 12 15
light qq
π,ρ,ω,f2,K,K*
1
2
cc
J/ψ, ηc, χcJ
3
conventional
charmonium
4
5
Mass [GeV/c2]
Other exotics with
identical decay channels  same region
6
21
K. Peters - Charm Physics @ Panda
Heavy Glueballs
Light gg/ggg-systems are
complicated to identify (mixing!)
Exotic heavy glueballs
0+2+-
m(0+-) = 4140(50)(200) MeV
m(2+-) = 4740(70)(230) MeV
Width unknown, but!
nature invests more likely in mass
than in momentum
newest proof: double cc yield in e+e-
Flavour-blindness
predicts decays into
charmed final states too
Same run period as hybrids
In addition: scan m>2 GeV/c2
Morningstar,Peardon,
PRD60(1999)34509
Morningstar,Peardon,
PRD56(1997)4043
22
K. Peters - Charm Physics @ Panda
Open charm discoveries
The DS± Spectrum |cs> +c.c. was not expected to reveal
Potential model
Old measurements
m [GeV/c2]
any surprises, but chiral and heavy quark aspects meet
Ds1
Combinatorial DS*+ g
DS*+(2112)
New observations
BABAR
D*K
Ds2
DsJ
# 1267  53
Events in peak
DsJ*(2317)
D0K
(2458)
Ds*
DsJ*
(2317)
Ds
0-
1-
0+
JP
1+
2+
323
K. Peters - Charm Physics @ Panda
Ds[J][*]± Pairproduction in pp Annihilation
Associated Pair m/MeV/c2
JP
Channel (+cc)
Final State
Ds(1968.5)
Ds (1968.5)
3937.0
0+,1-,2+,3-,4+
Ds+Ds-
2K-2K+p+p-
Ds (1968.5)
Ds*(2112.4)
4080.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(Ds-g)
2K-2K+p+p-g
Ds*(2112.4)
Ds*(2112.4)
4224.8
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-g)
2K-2K+p+p-gg
Ds (1968.5)
DsJ*(2317.5)
4286.0
0-,1+,2-,3+,4-
Ds+(Ds-p0)
2K-2K+p+p-p0
Ds (1968.5)
DsJ(2458.5)
4427.0
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+((Ds-g)p0)
2K-2K+p+p-p0g
Ds*(2112.4)
DsJ*(2317.5)
4429.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-p0)
2K-2K+p+p-p0g
Ds (1968.5)
Ds1(2535.4)
4503.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(D*-K0)
2K-K+KSp+2p-(p0)
Ds (1968.5)
DsJ*(2572.4)
4540.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(D0K-)
2K-2K+p+p-(p0)
Ds*(2112.4)
DsJ(2458.5)
4570.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)((Ds-g)p0)
2K-2K+p+p-p0gg
DsJ*(2317.5)
DsJ*(2317.5)
4635.0
0+,1-,2+,3-,4+
(Ds+p0)(Ds-p0)
2K-2K+p+p-2p0
Ds*(2112.4)
Ds1(2535.4)
4647.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(D*-K0)
2K-K+KSp+2p-(p0)g
Ds*(2112.4)
DsJ*(2572.4)
4684.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(D0K-)
2K-2K+p+p-(p0)g
Ds (1968.5)
D1*(2770)
4738.5
0-,1-,1+,2-,2+,3-,3+,4-,4+
Ds+(Ds-p+p-)
2K-2K+2p+2p-
DsJ*(2317.5)
DsJ(2458.5)
4776.0
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)((Ds-g)p0)
2K-2K+p+p-2p0g
Ds (1968.5)
D2(2870)
4838.5
0+,1-,1+,2-,2+,3-,3+,4-,4+
Ds+((Ds-g)p+p-)
2K-2K+2p+2p-g
DsJ*(2317.5)
Ds1(2535.4)
4852.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)(D*-K0)
2K-K+KSp+2p-(1-2)p0
Ds*(2112.4)
D1*(2770)
4882.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)(Ds-p+p-)
2K-2K+2p+2p-g
DsJ*(2317.5)
DsJ*(2572.4)
4889.9
0-,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+p0)(D0K-)
2K-2K+p+p-(1-2)p0
DsJ(2458.5)
DsJ(2458.5)
4917.0
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)((Ds-g)p0)
2K-2K+p+p-2p0gg
Ds*(2112.4)
D2(2870)
4982.4
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(Ds+g)((Ds-g)p+p-)
2K-2K+2p+2p-gg
DsJ(2458.5)
Ds1(2535.4)
4993.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)(D*-K0)
2K-K+KSp+2p-(1-2)p0g
DsJ(2458.5)
DsJ*(2572.4)
5030.9
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
((Ds+g)p0)(D0K-)
2K-2K+p+p-(1-2)p0g
Ds1(2535.4)
Ds1(2535.4)
5070.8
0-,0+,1-,1+,2-,2+,3-,3+,4-,4+
(D*+K0)(D*-K0)
K-K+2KS2p+2p-(0-2)p0
24
K. Peters - Charm Physics @ Panda
Charmonium mass shift in nuclear matter
Quantu
QCD
Potential
QCD
Effects of
m
2nd Stark eff.
model
sum rules
DD loop
numbers
ηc
0-+
–8 MeV [1]
J/ψ
1--
–8 MeV [1]
cc0,1,2
0,1,2++
-40 MeV [2]
ψ(3686)
1--
-100 MeV [2]
< 30 MeV [2]
ψ(3770)
1--
-140 MeV [2]
< 30 MeV [2]
–5 MeV [4]
-10 MeV [3]
–7 MeV [4]
< 2 MeV [5]
-60 MeV [2]
[1] Peskin, NPB 156(1979)365, Luke et al., PLB 288(1992)355
[2] Lee, nucl-th/0310080
[3] Brodsky et al, PRL 64(1990)1011
[4] Klingel, Kim, Lee, Morath, Weise, PRL 82(1999)3396
[5] Lee, Ko PRC 67(2003)038202
25
K. Peters - Charm Physics @ Panda
Further Experiments and Optional extensions
Hypernuclear physics
3rd dimension of nuclear chart
Focus: Double Hypernuclei
Inverted DVCS - WACS
Measure dynamics of quarks and gluons in a hadron
Handbag diagram – electromagnetic final states
Proton Formfactors at large Q2
s up to 25 GeV2/c4
D(S)-Physics
Spectroscopy: Threshold production
BR and decay Dalitz plots with high statistics
CP-Violation in the D-Sector
29
K. Peters - Charm Physics @ Panda
Proposed Detector (Overview)
High Rates
Total σ ~ 55 mb
Vertexing
(σp,KS,Λ,…)
Charged particle ID
(e±,μ±,π±,p,…)
Magnetic tracking
Elm. Calorimetry
(γ,π0,η)
Forward capabilities
(leading particles)
Sophisticated Trigger(s)
30
K. Peters - Charm Physics @ Panda
31
K. Peters - Charm Physics @ Panda
Tracking: Straw Tube Tracker
Number of double layers
Skew angle of dbl layers 1 and 15
Skew angle of dbl layers 2-14
15
0o
2o-3o
Straw tube wall thickness
Wire thickness
Gas
Length
Diameter of tubes in
double layers
1-5, 6-10, and 11-15
Number of straw tubes
26 mm
20 mm
90%He
10%C4H10
150 cm
4 mm
6 mm
8 mm
8734
Transverse resolution sx,y
Longitudinal resolution sz
150 mm
1 mm
32
K. Peters - Charm Physics @ Panda
PID: DIRC (Cherenkov)
BaBar@SLAC
less space than aero gel
 costs of calorimeter
no problems with field
33
K. Peters - Charm Physics @ Panda
Electromagnetic Calorimeter
Detector material
PbWO4 (or BGO)
Photo sensors
Avalanche Photo Diodes
Crystal size
 35 x 35 x 150 mm3 (i.e 1.5 x 1.5 RM2 x 17 X0)
Energy resolution
1.54 % / E[GeV] + 0.3 % (PWO)
Time resolution
s  130 ps
Total number of crystals
7150
34
K. Peters - Charm Physics @ Panda
Simulation on ppψ(3770)DD
using D±K±π±π±
background
signal-to-background 1:O(107)
background from DPM
generator
plain reconstruction
180
160
140
120
100
80
60
40
20
Counts / 0.01 GeV / hour
3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
mass difference
Δm=m2K4π-mK2π,a-mK2π,b
m=Δm+2mD,PDG
signal-to-background O(100):1
including Kalman fitting
expect another factor of 5
counts/hour/0.01 GeV
signal-to-background 6:1
4.1 4.2 4.3
Mass (GeV/c2)
102
10
1
Counts
/ hour / 0.01 GeV
3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3
Mass from Δm (GeV/c2)
35
K. Peters - Charm Physics @ Panda
Simulation on ppηcγγ
|cosθ*|<0.25
σ(ηcγγ) = 200 nb
signal-to-background 1:1
main background
π0γ and π0π0
main cuts
missing mass squared
<0.16 GeV2/c4
cosθγγ<-0.9999
signal-to-background
(5.1±0.4):1
counts/10k/0.02 GeV
FermiLab E835
180
160
140
120
100
80
60
40
20
0
2.8
2.9
3
Mass (GeV/c2)
36
K. Peters - Charm Physics @ Panda
Participating Institutes
(with Representative in the Coordination Board)
45 Institutes from 12 Countries:
U Basel
U Frankfurt
U Pavia
IHEP Beijing
LNF-INFN Frascati
IHEP Protvino
U Bochum
U & INFN Genova
PNPI Gatchina
U Bonn
U Glasgow
U of Silesia
U & INFN Brescia
U Gießen
U Stockholm
U & INFN Catania
KVI Groningen
KTH Stockholm
U Cracow
IKP Jülich I + II
U & INFN Torino
GSI Darmstadt
U Katowice
Politechnico di Torino
TU Dresden
IMP Lanzhou
U Oriente, Torino
JINR Dubna
(LIT,LPP,VBLHE)
U Mainz
U & INFN Trieste
U Tübingen
U Edinburgh
U & Politecnico & INFN
Milano
U Erlangen
U Minsk
IMEP Vienna
NWU Evanston
TU München
SINS Warsaw
U & INFN Ferrara
U Münster
U Warsaw
BINP Novosibirsk
U & TSL Uppsala
37
K. Peters - Charm Physics @ Panda
Press Release 16/2003, http://www.bmbf.de
05.02.2003
Bulmahn gives green light for large-scale research equipment
"We are securing an international top position for German basic research"
...Basic research in the natural sciences has a long tradition in Germany. Its
success is inextricably linked with the use of large-scale equipment at national
and international research centres. "With the new concept, basic research in
Germany will start from an excellent position when entering a new decade of
successful work", Minister Bulmahn said.
Together with European partners, the Gesellschaft für Schwerionenforschung
(GSI) in Darmstadt is to develop further its equipment in a phased approach
and become a leading european physics centre. At least 25% of the costs
amounting to €675 million are to be shouldered by foreign partners.
38
K. Peters - Charm Physics @ Panda
Summary & Outlook
The PANDA experiment at the
antiproton facility HESR @ GSI
addresses many important questions
in open and hidden charm physics
Status:
Letter of Intent: Jan. 15, 2004
Technical Report: Dec. 15, 2004
Technical Design Report: 2005-2007
Commissioning: 2011
40
K. Peters - Charm Physics @ Panda