Standard Grade - Prestwick Academy

Download Report

Transcript Standard Grade - Prestwick Academy

www.maths4scotland.co.uk
Revision
Logarithms & Exponentials
Higher Mathematics
Next
Logarithms
Revision
Reminder
All the questions on this topic will depend
upon you knowing and being able to use,
some very basic rules and facts.
Click to show
Back
When you see this button
click for more information
Quit
Next
Logarithms
Revision
Three Rules of logs
loga x  loga y  loga xy
x
log a x  log a y  log a
y
loga x  p loga x
p
Back
Quit
Next
Logarithms
Revision
Two special logarithms
loga a  1
loga 1  0
Back
Quit
Next
Logarithms
Revision
Relationship between log and exponential
loga x  y  a  x
y
Back
Quit
Next
Logarithms
Revision
Graph of the exponential function
Back
Quit
Next
Logarithms
Revision
Graph of the logarithmic function
Back
Quit
Next
Logarithms
Revision
Related functions of y  f ( x)
y  f ( x  a)
y  f ( x  a)
y   f ( x)
y  f ( x)
y  f ( x)  a
y  f ( x)  a
Move graph left
a
Move graph right
units
a
units
Reflect in x axis
Reflect in y axis
Move graph up a units
Move graph down a units
Click to show
Back
Quit
Next
Logarithms
Revision
Calculator keys
Back
ln
=
log e
log
=
log 10
Quit
Next
Logarithms
Revision
Calculator keys
loge 2.5
=
log10 7.6
=
Back
ln
2
.
5
=
= 0.916…
log 7
.
6
=
= 0.8808…
Quit
Click to show
Next
Logarithms
Revision
Solving exponential equations
2.4  3.1e
x
Use log ab = log a + log b
loge 2.4  loge 3.1ex
loge 2.4  loge 3.1  loge ex
Use log ax = x log a
loge 2.4  loge 3.1  x loge e
Use loga a = 1
loge 2.4  loge 3.1  x
Take loge both sides
x  loge 2.4  loge 3.1  0.25593...  0.26 (2dp)
Back
Quit
Next
Show
Logarithms
Revision
Solving exponential equations
60  80e
Take loge both sides
Use log ab = log a + log b
Use log ax = x log a
Use loga a = 1
k  loge 80  loge 60
Back
k
loge 60  loge 80ek
k
loge 60  loge 80  loge e
loge 60  loge 80  k loge e
loge 60  loge 80  k
 0.2876...
Quit
 0.29 (2dp)
Next
Show
Logarithms
Revision
Solving logarithmic equations
log3 y  0.5
0.5
y 3
Change to exponential form

y 3
Change to exponential form
1
2

1
3
1
2
1

3
y  0.577....  0.58 (2dp)
Back
Quit
Next
Show
Logarithms
Revision
3loge (2e)  2loge (3e)
A  loge B  loge C
expressing your answer in the form
Simplify
where A, B and C are whole numbers.
loge (2e)  loge (3e)
3
 loge 8e3  loge 9e2
2
8e3
log e 2
9e
8e
 log e
9
 loge 8  loge e  loge 9
Back
Quit
 1  loge 8  loge 9
Next
Show
Logarithms
Simplify
Revision
log5 2  log5 50  log5 4
2  50
 log 5
4
 log5 5
2
Back
 log5 25
 2
 2 log5 5
Quit
Next
Show
Logarithms
Find x if
Revision
4 log x 6  2 log x 4  1
64
 log x 2  1
4
 log x 64  log x 42  1
9
 log x
36  36
1
4 4
1
9
 log x 81  1
1
 x  81
 x1  81
Back
Quit
Next
Show
Logarithms
Given
Revision
x  log5 3  log5 4
find algebraically the value of x.
 x  log5 3 4
 x  log5 12
 5x  12
 x log10 5  log10 12
 log10 5x  log10 12
log10 12
 x
log10 5
Back
 x  1.5439..
Quit
 x  1.54 (2dp)
Next
Show
Logarithms
Revision
Find the x co-ordinate of the point where the graph of the curve
with equation
y  log3 ( x  2)  1
intersects the x-axis.
When y = 0
0  log3 ( x  2)  1
Re-arrange
1  log3 ( x  2)
Exponential form
Re-arrange
Back
31  x  2
1
x  23
Quit
x2
1
3
Next
Show
Logarithms
Revision
The graph illustrates the law
y  kxn
If the straight line passes through A(0.5, 0)
and B(0, 1).
Find the values of k and n.
log5 y  log5 kx
n
Gradient
log5 y  log5 k  n log5 x
1
0.5
y-intercept
log5 k  1
Y  log5 k  nX
Back

 k 5
n  2 (gradient)
Quit
Next
Show
1
Logarithms
Revision
Before a forest fire was brought under control, the spread of fire was described
by a law of the form
A  A0ekt
where
A0
is the area covered by the fire when it was first detected
and A is the area covered by the fire t hours later.
If it takes one and a half hours for the area of the forest fire to double,
find the value of the constant k.
2 A0  A0ek1.5
 loge 2  1.5k
Back
 2  ek1.5
 loge 2  1.5k loge e
log e 2
 k
 k  0.462..  0.46
1.5
Quit
Next
Show
(2 dp)
Logarithms
The results of an experiment
Revision
give rise to the graph shown.
a) Write down the equation of the line
in terms of P and Q.
It is given that
P  loge p
and
Q  loge q
b) Show that p and q satisfy a relationship of the form
p  aqb
stating the values of a and b.
0.6
Gradient
y-intercept 1.8
P  0.6Q  1.8
Back
loge p  loge aqb
loge p  loge a  b loge q
P  loge a  bQ
loge a  1.8  a  e1.8
Quit
b  0.6
 a  6.05
Next
Show
Logarithms
Revision
The diagram shows part of the graph of
y  logb ( x  a)
Determine the values of a and b.
.
Use (7, 1)
1  logb (7  a)
...(1)
Use (3, 0)
0  logb (3  a)
...(2)
Hence, from (2)
and from (1)
Back
3 a 1
a  2
b5
1  logb 5
Quit
Next
Show
Logarithms
Revision
The diagram shows a sketch of
part of the graph of
y  log2 ( x)
a) State the values of a and b.
b) Sketch the graph of
a 1
y  log2 ( x  1)  3
b3
Graph moves
1 unit to the left and 3 units down
Back
Quit
Next
Show
Logarithms
Revision
a) i) Sketch the graph of
y  a x  1, a  2
ii) On the same diagram, sketch the graph of
y  a x1 , a  2
b) Prove that the graphs intersect at a point
where the x-coordinate is
a x  1  a x 1
 1 
log a 

 a 1 
 1  a x1  a x
 loga 1  loga ax  loga  a 1
 x   loga  a 1
Back
 1  ax  a 1
 0  x  loga  a 1
 x  log a  a  1
Quit
1
 1 
 x  log a 

  a  1 
Next
Show
Logarithms
Revision
Part of the graph of
y  5log10 (2 x  10)
is shown in the diagram.
This graph crosses the
x-axis at the point A and
y 8
the straight line
at the point B. Find algebraically the x co-ordinates of A and B.
8  5log10 (2 x  10) 
 101.6  2x  10
0  5log10 (2 x  10)
Back
8
 1.6  log10 (2x  10)
 log10 (2 x  10)
5
 101.6 10  2x  x  14.9 B (14.9, 8)
 2 x  10  1
Quit
 x  4.5
A (4.5, 0)
Next
Show
Logarithms
Revision
The diagram is a sketch of part of
y  ax , a  1
the graph of
a) If (1, t) and (u, 1) lie on this curve,
write down the values of t and u.
b) Make a copy of this diagram and on it
sketch the graph of
y  a 2x
c) Find the co-ordinates of the point of intersection of
y  a 2x
with the line
a)
t a
c)
y  a21
Back
x 1
u0
y  a2
b)
2
1,
a
 
Quit
Next
Show
Logarithms
Revision
The diagram shows part of the graph with equation
y  3x
and the straight line with equation
These graphs intersect at P.
Solve algebraically the equation
y  42
3x  42
and hence write down, correct to 3 decimal places, the co-ordinates of P.
log10 3x  log10 42
log10 42
 x
log10 3
Back
 x log10 3  log10 42
 x  3.40217...
 P (3.402, 42)
Quit
Next
Show
www.maths4scotland.co.uk
© CPD 2004
Quit