Transcript Slide 1

Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey,
M.J.W. Rodwell, and A.C. Gossard
ECE and Materials Departments
University of California, Santa Barbara, CA
S.R Bank
ECE Department, University of Texas, Austin, TX
2007 Device Research Conference
South Bend, Indiana
*[email protected]
2007 DRC
Outline
• Motivation
• Previous Work
• Approach
• Results
• Conclusion
2007 DRC
Device bandwidth scaling laws
1
kT
kT
  base   collector  C je
 Cbc
 RexCbc  RcollCbc
2f
qIE
qIE
f
f max 
8    Rbb  Ccbeff
Goal: Double transistor bandwidth
Increased Capacitance
Re x 
c
A
Reduce transit delay
Reduce RC delay
Lateral Scaling
Vertical Scaling
Keep R constant
Reduce c
c has to scale as inverse square of lateral scaling
*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001
2007 DRC
Device bandwidth scaling roadmap – THz transistor
Emitter Resistance key to THz transistor
Emitter resistance effectively contributes
> 50 % in bipolar logic gate delay*
Contact resistance serious barrier to THz
technology
2   m2 contact resistivity required
for simultaneous THz ft and fmax
*M.J.W. Rodwell, IEEE Trans. Electron. Dev., 2001
2007 DRC
Device bandwidth scaling-FETs
Source contact resistance must scale to the inverse square of device scaling
Source resistance reduces gm and Id
A 22 nm III-V MOSFET with 5 mA/m Id
L S/D
15   m source resistance will reduce
Id by 10%
50 nm
Lg
sidewall
metal gate
T ox
source contact
N+ regrowth
gate
dielectric
drain contact
N+ regrowth
quantum well
barrier
With 50 nm contact width this will require
c of 1   m2
undoped
substrate
P + substrate
Tw
undoped
substrate
Low source resistance means better NF in FETs*
 f 
NFmin  1  g mi ( Rs  Rg  Ri )   
 f 
*T Takahashi ,IPRM 07
2007 DRC
Conventional Contacts
• Conventional contacts
– complex metallization and annealing schemes
– Surface oxides, contaminants
– Fermi level pinning
– metal-semiconductor reaction improves resistance
5 - m2 ( 5 108 - m2 ) obtained on InGaAs, used on the latest HBT results
Further improvement difficult using this technique
Au
Pt
Reacted region
InGaAs
S.E. Mohney,PSU
M.Urteaga, Teledyne
Pt/Au Contact after 4hr 260C Anneal
2007 DRC
In-situ ErAs-InGaAs Contacts
• Epitaxial ErAs-InGaAs contact
– Epitaxially formed, no surface defects, no
fermi level pinning
– In-situ, no surface oxides
– thermodynamically stable
– ErAs/InAs fermi level should be above
conduction band
1J.D.
Zimmerman et al., J. Vac. Sci. Technol. B, 2005
InAlAs/InGaAs
Approximate Schottky barrier potential
III Er As
D. O. Klenov, Appl. Phys. Lett., 2005
S.R. Bank, NAMBE , 2006
2007 DRC
In-situ and ex-situ Contacts
• In-situ Mo Contact
– In-situ deposition no oxide at metal-semiconductor interface
– Fermi level pins inside conduction band of InAs
in-situ
40 nm in-situ Mo
7.5 nm in-situ ErAs
in-situ
40 nm in-situ Mo
5 nm InAs, 3.5x1019/cm3 N-type
5 nm InAs, 3.5x1019/cm3 N-type
95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type
95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type
100 nm In0.52Al0.48As, undoped
100 nm In0.52Al0.48As, undoped
Fe-doped InP substrate
Fe-doped InP substrate
in-situ
ErAs
In-situ
ErAs/InAs
in-situ
Mo
In-situ Mo/InAs
• Ex-situ contacts
– InGaAs surface oxidized by UV Ozone treatment
– Strong NH4OH treatment before contact metal deposition
500 nm ex-situ TiW
in-situ
ex-situ
95 nm In0.53Ga0.47As, 3.5x1019/cm3 N-type
100 nm In0.52Al0.48As, undoped
Fe-doped InP substrate
* S.Bhargava, Applied Physics Letters, 1997
ex-situ
TiW
Ex-situ
TiW/InGaAs
2007 DRC
MBE growth and TLM fabrication
•
MBE Growth
– InGaAs:Si grown at 450 C
– 3.5 E 19 active Si measured by Hall
– ErAs grown at 450 C, 0.2 ML/s
– Mo deposited in a electron beam evaporator
connected to MBE under UHV
– Mo cap on ErAs to prevent oxidation
– Layer thickness chosen so as to
satisfy 1-D condition in TLM
•
Lt
L
Lt/L >> 1
TLM Fabrication
– Samples processed into TLM
structures by photolithography and liftoff
– Mo and TiW dry etched in SF6/Ar with
Ni as etch mask, isolated by wet etch
– Separate probe pads from contacts to
minimize parasitic metal resistance
Vsense
Isource
Isource
Vsense
(a)
2007 DRC
Contact Resistance
• 15-18 Ohm sheet resistance for all
three contacts
ErAs/InAs
c(  m ) Lt (nm)
1.5
300
Mo/InAs
0.5
175
TiW/InGaAs 0.7
190
Contact
2
1  m  1 10   cm
2
8
Resistance (
20
3.5
Mo/InAs
15
TiW/InGaAs
10
3
Resistance ()
• Resistance measured by 4155 C
parameter analyzer
• Pad spacing verified by SEM
image
• Smallest gap, contact resistance
60 % of total resistance
4
2.5
5
0
0
5 10 15 20 25 30
Pad Spacing (m)
ErAs/InAs
2
1.5
Isource
1
2  RC 
0.5
0
Vsense
Vsense
0
1
2  C  RS
W
Isource
2
3
4
Pad
(a) Spacing (m)
Isource
Vsense
Vsense
Isource
5
6
2
2007 DRC
Ex-situ Contacts
• Ex-situ contact depends on the concentration of NH4OH*
c ( m2)
10
1
0.1
0
5
10
NH4OH Normality
15
* A.M. Crook, submitted to APL
2007 DRC
Thermal Stability
• Contacts annealed under N2 flow at different temperatures
• Contacts stays Ohmic after anneal
• In-situ Mo/InAs, ex-situ TiW/InGaAs contact resistivity < 1 -m2
after anneal
• ErAs/InAs contact resistivity increases with anneal
• The increase could be due to lateral oxidation of ErAs
2
Specific Contact Resistivity (m )
100
10
ErAs/InAs
As Deposited
TiW/InGaAs
1
Mo/InAs
0.1
0
100
200
300
400
500
Temperature (C)
2007 DRC
Thermal Stability
• SIMS depth profiling shows that Mo and TiW act as diffusion barrier to Ti and Au
Ni
Intensity (arb. units)
Ti
In
Mo
Ga
Au
0
50
100
150
200
250
Etching Time (sec)
300
350
400
SIMS profile of contacts annealed at 400 C
2007 DRC
Error Analysis
• 1-D Approximation
Lt
• Large Lt/L,
• Overlap resistance
• Wide contact width reduces
overlap resistance.
• 1-D case, Overlap resistance
overestimates extracted c
 2D/ 1D
• 1-D case overestimates c
c
c
.000256*contact/((V1-.032)*(V1-.032))
L
1.0
0.6
0.4
0.0
0.0
0.5
*H.Ueng, IEEE TED,2001
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Lt/L
156.25*(V1-.032)
(a)
W = 26 um
Isource
• Resistance, minimized by using
4155C parameter analyzer
• dc/c* is 60 % at 1 -m2 , 75 % at
0.5 -m2
Isource
Vsense
0.2
• Errors
• Pad spacing, minimized by SEM
inspection
Vsense
Isource
0.8
Pad Spacing
Vsense
(b)
Vsense
Isource
2007 DRC
Integration into Device Processing
• HBT emitter contact*
Ti/W or Mo
Ti/W
Ti/W
InGaAs/InP emitter
InGaAs Base
InP Collector
Sub-Collector
SI substrate
InGaAs Base
InP Collector
Sub-Collector
SI substrate
Dry etch Emitter metal
Dry + Wet etch Emitter
InGaAs/InP emitter
InGaAs Base
InP Collector
Sub-Collector
SI substrate
Blanket metal depostion
*E.Lind, Late News,DRC 2007
• Source Contact in FETs
r
well
barrier
(starting material)
r
well
barrier
nonselective regrowth
r
well
barrier
planarize
r
well
barrier
etch
r
well
barrier
strip resist
2007 DRC
Conclusion
• Ultra Low Ohmic contacts to InGaAs/InP with c < 1 -m2
• Contacts realized by both in-situ and ex-situ
• In-situ Mo/InAs and ex-situ TiW/InGaAs c < 1 -m2 even after 500 C anneal
• In-situ ErAs/InAs contacts c =1.5 -m2, increases gradually with anneal
This work was supported by Office of Naval Research (ONR) Ultra Low Resistance
Contacts program and a grant by Swedish Research Council
2007 DRC