Transcript Document

Two-Group Neutron Diffusion

Homogeneous system  Determinant of coefficients matrix = 0  

a

1 

D

1

B

2  

a

1  

k

 

a

2 

a

2 

D

2

B

2  0 (  

a

1 

D

1

B

2 )(  

a

2 

D

2

B

2 ) 

k

  

a

2  

a

1  0 ( 

a

1 

D

1

B

2 )( 

a

2 

D

2

B

2 ) 

k

 

a

2 

a

1  0 1 (

L

2

Fast

B

2 )( 1

L

2

Thermal

B

2 ) 

k

L

2 1

Fast

( 1 

B

2

L

2

Fast

)( 1 

B

2

L

2

Thermal

) 

k

 1

L

2

Thermal

 0  0 Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

1

Two-Group Neutron Diffusion

( 1 

B

2

L

2

Fast

)( 1 

B

2

L

2

Thermal

) 

k

  0 ( 1 

B

2

L

2

Fast k

)( 1  

B

2

L

2

Thermal

)  1

k eff

P Fast non

leak P Thermal non

leak k

 For large reactors  1

B

2

L

2

Thermal

 1 1 

B

2 (

L

2

k

 

Fast L

2

Thermal

)  1 

B

2 

k

 

M

2 1 1

B

2

L

2

Fast

 1 Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

2

M

2

Two-Group Neutron Diffusion

L

2

Thermal

L

2

Fast

If any  leakage  .

2

L Thermal

D

a

 3 

tr

a

 3 

a

1 

tr

Fermi age  2

L Fast

 3 

s n

tr

Slowing down density.

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

3

Reactor Model: One-Group

• Before considering multi-group.

• So far we did 1-D.

• Let us consider one-group but extend to 3-D.

HW 22 |

For the homogeneous infinite slab reactor, extend the criticality condition that you found in HW 22.

B g

2    

a

0   2 

B m

2 

k

L

2  1   

f D

 

a d

z

Reactor

a/2 a a 0 /2

1-D

d

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

4

x

Reactor Model: One-Group

• In 3-D

d

2  (

x

) 

B

2  (

x

)  0

dx

2   2  

x

2   2  

y

2   2  

z

2 

B

2   0  

f

 

a D

   0 cos

Bx

    0 cos

B x x

cos

B y y

cos

B z z B g

2    

a

0   2 

B m

2

B g

2 

k

L

2  1   

B x

2 

B y

2 

f

 

a

B z

2

D

   

a

0    2    

b

0   2    

c

0   2 

B m

2 

k

L

2  1   

f D

 

a

Critical dimensions (size), for the given material properties, predicted by the model.

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

5

Reactor Model: One-Group

1

v

• Transient case.

 

t

 (

r

 ,

t

)

t

!

S

(

r

 ,

t

)  

a

(

r

 )  (

r

 ,

t

)    

D

(

r

 )    (

r

 ,

t

)

t

!

a fuel

  Moderator, structure, coolant, fuel, …

f fuel

  

fuel

• Delayed neutrons!!

• For homogeneous 1-D: 1

v

 

t

 (

x

,

t

) 

S

(

x

,

t

)  

a

 (

x

,

t

) 

D

 2 

x

2  (

x

,

t

) Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

 

f

 (

x

,

t

) 6

Reactor Model: One-Group

1

v

 

t

 (

x

,

t

)   

f

 (

x

,

t

)  

a

 (

x

,

t

) 

D

 2 

x

2  (

x

,

t

)

HW 26

1

T

Separation of variables: 1

v

 

T

t

  

f

 (

x

,

t

) 

T

   

a

 (

x

)

T

(

t

)

T

DT

T

t

v

  

D

 2  

x

2  (  

f

 

a

)         2  

x

2 constant = 0 for steady state.

Show that

T

(

t

) 

T

( 0 )

e

 

t

,

d

2 

dx

2 Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

B

2   0 ,  

v

( 

a

DB

2   

f

) 7

Reactor Model: One-Group

HW 26 (continued)

 ( 

a

0 ) 2  0 try eigenvalues 

n

(

x

) 

n

 cos

B n x

v

( 

a

DB n

2  

B n

2 

f

)    

n

a

0    2 Solution  (

x

,

t

) 

n

odd

?

A n e

 

n t

cos  

n

x a

0   ?

Initial condition Show that

A n

  ( 2

a

0

x

, 0 )   

a

2 0

a

2 0   (

n

odd x

, 0 )

A n

cos   cos  

n

x a

0

n

x

 

a

0

dx

  Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

8

Reactor Model: One-Group

B n

2 

n

    

v

(

n

a

0 

a

   2  

DB n

2

B

1 2 

B

2 2   

f

) 

B

3 2   ...

 2 1   2 2   2 3  ...

 1 

v

( 

a

DB

1 2   

f

) Slowest decaying eigenvalue .

  (

x

,

t

) 

A

1

e

  1

t

 cos  

x a

0   

A

1

e

  1

t

cos

B

1

x

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

9

Reactor Model: One-Group

For steady state

Criticality

B

1 2  1  

B g

2

v

( 

a

    

DB

1 2

f D

 

a

   

f B m

2 )  0  1  0

Super criticality

B g

2 

B m

2

LE

  1  0

Sub criticality

B g

2 

B m

2

LE

  1  0 Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

10

Reactor Model: One-Group

1

v

• That was for the bare slab reactor.

• What about more general bare reactor models?

 

t

 ( 

r

,

t

) 

S

(

r

 ,

t

)  

a

( 

r

)  (

r

 ,

t

)    

D

(

r

 )    (

r

 ,

t

) • For steady state, homogeneous model:  2  (

r

 ,

t

)   

f D

 

a

 (

r

 ,

t

)   2  ( 

r

,

t

) 

k

L

2  1  (

r

 ,

t

)  0 • BC: 

(extrapolated boundary) = 0.

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

11

Reactor Model: One-Group

R 0 , H 0

1 

r

r

are the extrapolated dimensions.

r

dr

 

dz

2  2 

B

2   0

R

• BC’s:  (

R

0 ,

z

)  0  (

r

, 

H

0 2 )  0 Reactor

H

• Let  (

r

,

z

)   (

r Bessel

)  (

z cos

) •

Solve the problem and discuss criticality condition.

Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed Dababneh).

Project 3

12