Transcript Document

Steady State Diffusion Equation
HW 20
Study example 5.3 and solve problem 5.8 in Lamarsh.
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
1
Steady State Diffusion Equation
One-speed neutron diffusion in a finite medium
• At the interface
A  B
A
B
d A
dB
J A  J B   DA
  DB
dx
dx
x
• What if A or B is a vacuum?
• Linear extrapolation distance.
• Bare slab with central infinite planar source (Lamarsh).
• Same but with medium surrounding the slab.
• Maybe we will be back to this after you try it!!
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
2
More realistic multiplying medium
One-speed neutron diffusion in a multiplying medium
The reactor core is a finite multiplying medium.
• Neutron flux?
• Reaction rates?
• Power distribution in the reactor core?
Recall:
• Critical (or steady-state):
Number of neutrons produced by fission = number
of neutrons lost by:
neutronproductionrate(S)
k 
(1) absorption
neutronabsorptionrate( A)
(1) leakage
keff 
neutronproductionrate( S )
neutronabsorptionrate( A)  neutronleakage rate( LE )
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
3
More realistic multiplying medium
keff
A

 Pnon leak
k A  LE
LE  SA
surface area
S V
Volum e
non- leakageprobability
For a critical reactor:
Keff = 1
K > 1
LE SA a 2 1

 3 
S
V
a
a
Steady state homogeneous reactor



2
0  a k (r )  a  (r )  D  (r )


k  1
2
2
2
  (r )  B  (r )  0
B  2
L
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
Material buckling
4
More on One-Speed Diffusion
HW 21
Show that for a critical homogeneous reactor
Pnon leak
a 
a 
1
 2 2


2
2
B L  1  a   D   a   B D
Infinite Slab Reactor (one-speed diffusion) z

• Vacuum beyond.
• Return current = 0.
Reactor
x
d = linear extrapolation distance
a/2
= 0.71 tr (for plane surfaces)
a
= 2.13 D.
a0/2
d
d
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
5
More on One-Speed Diffusion
HW 22
d 2
For the infinite slab 2  B 2  0 . Show that the
dx
general solution
 ( x)  A cos Bx  C sin Bx
With BC’s
a0
)0
2
d ( x)
0
dx x 0
 (
Flux is symmetric about
the origin.

 ( x)  A cos Bx
A  0
a0
a0
a0
 3 5
 ( )  A cos B( )  0  B( )  , , ,...
2
2
2
2 2 2
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
6
More on One-Speed Diffusion
HW 22 (continued)
a0
 3 5
B( )  , ,
,...
2
2 2 2
 3 5
a0  , ,
,...
B B B
Fundamental mode, the only mode significant in
critical reactors.
 ( x)  0 cos

a0
x
B

a0
 Geometrical Buckling
For a critical reactor, the geometrical buckling is equal
to the material buckling.
2
 
k  1
To achieve criticality
 
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
 a   L2
 0
7
More on One-Speed Diffusion
Spherical Bare Reactor (one-speed diffusion)
6a
4a
4 3
3
a
3 a
2
2
Minimum leakage  minimum fuel to achieve criticality.
2
d
 2 d
HW 23
2


B
 0
2
dr
r dr
A
C
  cos Br  sin Br
r
r
Reactor
r

C
r

  sin , r0 
r
r0
B

Continue!
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
x
r0
8
More on One-Speed Diffusion
HW 24
Infinite planer source in an infinite
medium.
SL  x / L
d 2 ( x) 1
S ( x)
e
 2 
  ( x) 
2
dx
L
D
2D

HW 25
Infinite planer source in a finite
medium.
SL sinha0  2 x  / 2L

2D cosh(a0 / 2L)
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
x
a/2
a
a0/2
Source
9
More on One-Speed Diffusion
Infinite planer source in a multi-region medium.
1 ( a / 2)  2 ( a / 2)
d1
d2
D1
 D2
Infinite
Finite
Infinite
dx
dx
x a / 2
 m ore
x a / 2
BC

Project 2
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
10
Back to Multiplication Factor
k
k = fp,
P
 keff  fPnon leak
eff
k
non leak
1
• Fast from thermal,  

a
• Fast from fast, .
 (i)
f
(i)
i
• Thermal from fast, p.
• Thermal available for fission
afuel
f  fuel
mod erator
poison
a  clad




a
a
a
Thinking QUIZ
• For each thermal neutron absorbed, how many fast
neutrons are produced?
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
11
Two-Group Neutron Diffusion
• Introductory to multi-group.
• All neutrons are either in a fast or in a thermal energy
group.
• Boundary between two groups is set to 1 eV.
• Thermal neutrons diffuse in a medium and cause
fission (or are captured) or leak out from the system.
• Source for thermal neutrons is provided by the slowing
down of fast neutrons (born in fission).
• Fast neutrons are lost by slowing down due to elastic
scattering in the medium or leak out from the system (or
fission or capture).
• Source for fast neutrons is thermal neutron fission.
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
12
Two-Group Neutron Diffusion

1 (r ) 
10 MeV

  ( E, r )dE
Fast
1eV
1eV


2 (r )    ( E , r )dE
Therm al
0
 1  f 1 1  2  f 2 2
keff 
2
2
 D1 1  D2 2  a1 1  a 2 2
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
13
Two-Group Neutron Diffusion



2
0  S1 (r )  a1 1 (r )  D1 1 (r )
Depends on
thermal flux.
Fast diffusion
Removal cross section coefficient
= fission + capture +
scattering to group 2




2
0   f 1 1 (r )   f 2 2 (r )  a1 1 (r )  D1 1 (r )
or
0
k




2
 a 2 2 (r )   a1 1 (r )  D1 1 (r )
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
14
Two-Group Neutron Diffusion



2
0  S2 (r )  a 2 2 (r )  D2 2 (r )
Depends on fast
flux.
Thermal absorption
cross section = fission
+ capture.
Thermal diffusion
coefficient



2
0  s12 1 (r )  a 2 2 (r )  D2 2 (r )
or



2
0   a1 1 (r )  a 2 2 (r )  D2 2 (r )
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
15
Two-Group Neutron Diffusion
0
k




2
 a 2 2 (r )   a1 1 (r )  D1 1 (r )



2
0   a1 1 (r )  a 2 2 (r )  D2 2 (r )
• A coupled system of equations; both depend on
both fluxes.
• For a critical, steady state system:


2
 1 (r )  B 1 (r )  0


2
2
 2 ( r )  B 2 ( r )  0
2
Nuclear Reactors, BAU, 1st Semester, 2007-2008 (Saed
Dababneh).
Review
Cramer’s
rule!
Geometrical
16