Transcript Slide 1

CESD

SAGES

Scottish Alliance for Geoscience, Environment & Society

Modelling Climate Change

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Climate Modelling

CESD

• Climate modelling has long history – first attempts made in 1950’s.

– Developed from numerical weather prediction – Take physical laws and apply them to atmospheric motions.

– But now very complex. • Aim of this lecture is to give you some flavour for issues. Main focus is on atmospheric modelling.

• Key message: – Modelling approach is “bottom up” and “emergent behaviour” of model is what we are interested in.

CESD

Climate is a Multi-scale problem

From Bob Harwood

CESD

Modelling the Climate System

Main Message: Lots of things going on!

Karl and Trenberth 2003

CESD 68 100

From Kevin E. Trenberth, NCAR

The Components of the Climate System

CESD

• Atmosphere: –Volatile turbulent fluid, strong winds, Chaotic weather, clouds, water vapor feedback –Transports heat, moisture, materials etc.

–Heat capacity equivalent to 3.2 m of ocean • Ocean: – 70% of Earth, wet, fluid, high heat capacity –Stores, moves heat, fresh water, gases, –Adds delay of 10 to 100 years to response time Kevin E. Trenberth

The Components of the Climate System: Cont.

CESD

• Land: –Small heat capacity, small mass involved (conduction) –Water storage varies: affects sensible vs latent fluxes –Wide variety of features, slopes, vegetation, soils –Mixture of natural and managed –Vital in carbon and water cycles, ecosystems • Ice: –Huge heat capacity, long time scales (conduction) –High albedo: ice-albedo feedback –Fresh water, changes sea level – Antarctica 65 m (WAIS 4-6m), Greenland 7m, other glaciers 0.35m

Kevin E. Trenberth

CESD

The Atmosphere

CESD

Meteorology is (roughly) fluid dynamics on rotating sphere.

D

V

 2

Ω

V

Dt

  1  

p

g a

F f

D Dt

  

t

V

  +   

t

  ( 

V

)  0 Equations of motion + moisture + radiation… Continuity

CESD

Numerical Solutions

• No (known) analytical solutions to these equations. (Maximum Entropy Production…???).

– Not surprising – think of range of phenomenon in weather.

• So discretise equations of motion on a grid. (Easy to say; hard to do!) • Lots of ways of doing this but two major ones at the moment.

– Represent as truncated sum of spherical harmonics – Or as values at points/averaged over regular grid.

CESD

Representing the fields: Gridpoint models Represent space as a grid of regular (in long/latt co ords)

CESD Modelling Global Climate Vertical exchange between layers of momentum, heat and moisture 60 ° N 15 ° W 3.75

° 2.5

° Horizontal exchange between columns of momentum, heat and moisture Vertical exchange between layers of momentum, heat and salts by diffusion, convection and upwelling 47.5

° N 11.25

° E Vertical exchange between layers by diffusion and advection Orography, vegetation and surface characteristics included at surface on each grid box

CESD

+ X i-1,j+1 + X i-1,j + X i-1,j-1 + X i,j+1

Derivatives

+X i+1,j+1

d dx

X i

 1 ,

j

 2 

x X i

 1 ,

j

+ X i,j + X i,j-1 + X i+1,j + X i+1,j-1

d dy

X i

,

j

 1  2 

y X i

,

j

 1

Representing the fields: Spectal Models

CESD

• Represent fields as truncated sum of spherical harmonics • Derivatives easy to calculate (from analytical expression) and PDE’s turn into ODE’s • Non-linear terms become computationally hard though.

• So do linear & diffusive terms in spectral space then transform to grid point space to compute advective terms.

Schematic

CESD

Grid-point space Spectral transform Spectral space Advection Grid-point space Inverse Spectral transform Spectral space Linear calculations

CESD

Computing advective terms

Eulerian vs Lagragian view of a fluid

CESD

• Eulerian view. Sit at a point and watch the fluid move past.

• Lagrangian view. Sit on a parcel of fluid and watch the world move past.

• For pure advection in a Lagrangian view parcel properties stay constant.

DC Dt

 

C

t

V

 

C

 0

Eulerian

CESD

DC Dt

C

t

 

C

t

 

V

 

C

+  +

V

 

C

+ +  0 + + + + + + + + + + + + + + + + + + + + For each grid point compute divergence and take dot-product with velocity field.

+ + + + + + + + + + + +

CESD

Semi-Lagrangian -- now used by most atmospheric models + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + For each grid point work out trajectory and where values came from. These places not on grid so need to interpolate values.

CESD

New approaches – adaptive grids

ICOM – Imperial College Ocean Model. Grid resolution varies and changes in time

Further Reading

CESD

ECMWF lecture notes: http://www.ecmwf.int/newsevents/training/r course_notes/index.html

ICOM http://amcg.ese.ic.ac.uk/index.php?title=IC OM

Sub-grid.

CESD

• Recall equations of motion • Split into large scale average and residual.

 

V

 

V

V

 

V

 (

V

V

 

V

  ) 

V

   (

V

V

  

V

 ) 

V

V

 

V

 

V

 

V

V

  

V

 Get large-scale terms that result from sub grid scale motions…

Parameterisation

CESD

• Like the closure problem for fluid dynamics.

• Key processes: – Convection (which involves latent heat release from water vapour condensing) – Clouds in general.

– Boundary layers.

– Need to simplify radiation calculations into relatively small number of broad bands and assume radiation only goes up and down. Can verify calculations through comparison with line-by line calculations.

– Friction… • Many specialists work in each area. An atmospheric model (Weather) is a complex piece of software. Numerical methods for dynamics are complex as are parameterisations.

CESD

Parameterized Processes

Slingo From Kevin E. Trenberth, NCAR

CESD

What are we trying to parameterize?

What is there… How we parameterise

(Atmospheric) Modelling over-view

CESD

• Dynamical core – solve large scale flow.

– Linear terms – Advection • Parameterisations. – Act on columns so each column can be treated independently. – Key for climate • Codes run on parallel computers but don’t scale well to hundreds of CPU’s • Climate problem doesn’t have very high resolution as need to run ensembles and for decades to centuries.

Feedbacks

CESD

• Act to amplify (or decrease) warming from changes in CO2 and other greenhouse gases.

– Blackbody – warmer planet emits more radiation. (Negative feedback) – Water vapour – warmer atmosphere can store more water vapour. Water vapour absorbs IR so is a GHG.

• Most important in the upper troposphere • Warmer world will have more moisture in the atmosphere and so will trap more heat. +ve feedback.

– Clouds • +ve feedback – “trap” IR radiation • -ve feedback – reflect back solar radiation.

– Ice/Albedo feedback. • Ice is white and reflects lots of solar energy back to space.

• Melt ice and more solar radiation absorbed which in turn warms the climate..

Ocean Models

CESD

Modelled Ocean circulations driven by: • Wind stress • Density variations (colder and saltier water is more dense) Thermohaline circulation driven by sinking of cold, salty water

Land Surface Models

CESD

Solar radiation Snow Vegetation Wind Air temperature and humidity Thermal radiation Heat Evaporation CO 2 CH 4 Lakes Soil moisture

CESD

Model resolution increasing with time.

CESD

Early Visions

CESD

More recent visions Cray Y-MP ~ 1990 HECToR – Edinburgh 2007

CESD

Moore’s Law and Supercomputers

Doubling time of peak supercomputer performance is about 18 months.

Number of transistors doubles every 2 years. But as they get smaller they go faster.

Computational requirements

CESD

Computational requirements scale as (1/resolution) 4 . Decrease resolution means increasing the number of gridboxes in east/west, North/south and vertically as well as reducing the time-step proportionally. Improved algorithms can change the constant of proportionality. So doubling the resolution increases the computational requirement by 16. Given increase in super-computer performance could do the same kind of simulations as today at ½ the resolution in 10 years time…

CESD

Projections of Future Changes in Climate Best estimate for low scenario (B1) is 1.8

°C (

likely

range is 1.1

°C to 2.9

°C), and for high scenario (A1FI) is 4.0

°C (

likely

range is 2.4

°C to 6.4°C).

Projections of Future Changes in Climate

CESD

Projected warming in 21st century expected to be greatest over land and at most high northern latitudes and least over the Southern Ocean and parts of the North Atlantic Ocean

CESD

Projections of Future Changes in Climate Precipitation increases

very likely

in high latitudes Decreases

likely

in most subtropical land regions

Some thoughts on Informatics issues

CESD

• Climate models getting increasingly complex and becoming Earth System models.

• So represent many more processes and require involvement from communities that are non-operational.

• How to bring that software together in a useful system.

• How to persuade academics to produce high-quality code so that others can build on their work.

• Social changes (metric of academic success needs to be more than a journal paper) • Technological support – infrastructure to support distributed software and scientific development.

Model development

CESD

• Earth System models are hugely complex bits of software • Don’t know what the outcome should be – If we did then we wouldn’t be building the system.

• But models need “tuning” where parameters in the various components are adjusted to give reasonable simulation of today's climate.

• Tuning/building Models is a very hard and laborious.

• Are there good ideas in the informatics community on how to do this better?

Computational issues

CESD

• How to effectively use massively parallel computers….

• Earth System models need to be run for decades to centuries with relatively low resolution.

• So tend not to scale very well on very large parallel computers • Same issue on multi-core chips where issue is memory bandwidth.

• Is the answer specialist Earth System computing chips????

• What about data management?

• And data distribution – see http://www pcmdi.llnl.gov/ipcc/about_ipcc.php

for a good example

Summary and Conclusions

CESD

• Models complex but built bottom up.

– Uncertainties arise from imperfect knowledge of small-scale processes and how to model them in terms of large scale flow.

• I’ve mainly discussed atmospheric models • Dynamical core + physics.

• Lots of informatics issues….