Structural Engineering - Indian Institute of Technology

Download Report

Transcript Structural Engineering - Indian Institute of Technology

ME101: Engineering Mechanics (3-1-0-8)

Jan-May 2014 Division I/III (Room No.: L1) Instructor

Dr. Arunasis Chakraborty

Room M-106 Department of Civil Engineering, IITG [email protected]

Phone: 258 2430 Web: www.iitg.ernet.in/arunasis shilloi.iitg.ernet.in/~arunasis 26-04-2020 1

Syllabus for 7

th

Week:

    

Parallel axis theorem Product of inertia Rotation of axes Principal moment of inertia Moment of inertia of simple and composite bodies

Mass moment of inertia

26-04-2020 2

MI of Standard Sections:

26-04-2020 3

26-04-2020

Parallel Axis Theorem:

• Consider moment of inertia

I

with respect to the axis

AA’

of an area

A I

 

y

2

dA

• The axis

BB’

passes through the area centroid and is called a

centroidal axis.

Parallel Axis theorem: MI @ any axis = MI @ centroidal axis + Ad

2 The two axes should be parallel to each other.

Parallel Axis theorem

I

 

y

2

dA

  

y

 

d

 2

dA

 

y

 2

dA

 2

d

y

dA

d

2 

dA

• Second term = 0 since centroid lies on BB’ (∫

y’dA

=

y c A

, and

y c

= 0

I

I

Ad

2 4

26-04-2020

Example - Parallel Axis Theorem:

• Moment of inertia

I T

of a circular area with respect to a tangent to the circle

I T

I

Ad

2  1 4 

r

4    

r

2  5 4 

r

4 • Moment of inertia of a triangle with respect to a centroidal axis

I A A

 

I B B

 

Ad

2

I B B

 

I A A

 

Ad

2  1 12

bh

3  1 2

bh

  3

h

2  1 36

bh

3 5

26-04-2020

MI of Thin Plates:

• For a thin plate of uniform thickness material of density

t

and homogeneous r , the mass moment of inertia with respect to axis

AA’

contained in the plate is

I A A

    r

r t

2

dm I

 r

t A A

 ,

area

r

2

dA

• Similarly, for perpendicular axis

BB’

which is also contained in the plate,

I B B

  r

t I B B

 ,

area

• For the axis

CC’ I C C

  r

t

which is perpendicular to the plate,

J C

,

area

 r

t

I A A

 ,

area

I B B

 ,

area

I A A

 

I B B

 6

26-04-2020

Moments of Inertia of Thin Plates:

For the principal centroidal axes on a rectangular plate

I A A

  r

t I A A

 ,

area

 r

t

 1 12

I B B

I C C

  

I

r

t I B B

 ,

area A A

 ,

mass

a

3

b

  1 12

ma

2

I

 r

B B

 ,

t

 1 12

mass ab

3  1  12  1

m

12 

a mb

2 2 

b

2  •

For centroidal axes on a circular plate

I A A

 

I B B

  r

t I A A

 ,

area

 r

t

1 4    1 4

mr

2 7

26-04-2020

Composite Bodies and Figures:

Divide bodies or figures into several parts such that their mass centers can be conveniently determined  Use Principle of Moment for all segments

m

1 

m

2 

m

3

X

m

1

x

1 

m

2

x

2 

m

3

x

3 Mass Center Coordinates can be written as:

X

  

m x m Y

  

m y m Z

  

m z m

m’s can be replaced by L’s, A’s, and V’s for lines, areas, and volumes 8

26-04-2020

Integration vs App Summation:

Reduce the problem to one of locating the centroid of area  App Summation may be used instead of integration Divide the area into several strips Volume of each strip = AΔx Plot all such A against x.

 Area under the plotted curve represents volume of whole body and the x-coordinate of the centroid of the area under the curve is given by:

x

A

x A

x

x c

x

 

Vx c V

Accuracy may be improved by reducing the width of the strip

9

26-04-2020

MI of 3D Body by Integration:

• Moment of inertia of a homogeneous body is obtained from double or triple integrations of the form

I

 r 

r

2

dV

• For bodies with two planes of symmetry, the moment of inertia may be obtained from a single integration by choosing thin slabs perpendicular to the planes of symmetry for

dm.

• The moment of inertia with respect to a particular axis for a composite body may be obtained by adding the moments of inertia with respect to the same axis of the components.

10

26-04-2020

Mass Moments of Inertia:

• •

Important in Rigid Body Dynamics I is a measure of distribution of mass of a rigid body w.r.t. the axis in question (constant property for that axis).

Units are (mass)(length) 2

kg.m

2 Consider a three dimensional body of mass m Mass moment of inertia of this body about axis O-O:

I = ∫ r

2

dm

Integration is over the entire body.

r = perpendicular distance of the mass element dm from the axis O-O

11

MI of Common Shapes:

26-04-2020 12

26-04-2020

Theorems of Pappus:

- method for calculating surface area generated by revolving a plane curve about a non-intersecting axis in the plane of the curve - method for calculating volume generated by revolving an area about a non-intersecting axis in the plane of the area Surface Area Area of the ring element: circumference times dL dA = 2πy dL

If area is revolved through an angle θ<2π

Total area,

A

 2  

y dL

θ in radians 

y L

 

y dL

A

2 

y L

y L y

is the y-coordinate of the centroid C for the line of length L Generated area is the same as the lateral area of a right circular cylinder of length L and radius

y

Theorems of Pappus can also be used to determine centroid of plane curves if area created by revolving these figures @ a non intersecting axis is known

13

26-04-2020

Theorems of Pappus:

method for calculating volume generated by revolving an area about a non-intersecting axis in the plane of the area Volume Volume of the ring element: circumference times dA dV = 2πy dA Total Volume,

y A

 

y dA

V

V

2 

y dA

2 

y A

If area is revolved through an angle θ<2π θ in radians

V

 

y A y

is the y-coordinate of the centroid C of the revolved area A Generated volume is obtained by multiplying the generating area by the circumference of the circular path described by its centroid.

Theorems of Pappus can also be used to determine centroid of plane areas if volume created by revolving these figures @ a non-intersecting axis is known

14

Example:

26-04-2020

Determine the volume V and surface area A of the complete torus of circular cross section The torus can be generated by revolving the circular area of radius a through 360 o about z-axis

V

 

r A

 2   2  2

Ra

2

Similarly,

A

 

r L

 2    2 

a

  4  2

Ra

15

Example:

26-04-2020

Calculate the volume V of the solid generated by revolving the 60mm right triangular area through 180 o about z-axis The volume after revolving the area by 180 o about z-axis

V

 

r A

    30  1 3 60     1 2 60 .

60    2 .

83

E

5

The mass of the body if density is 7800kg/m 3 (i.e. steel)

m

 r

V

 7830  2 .

83

E

5  1 1000 3  2 .

21

kg

16

26-04-2020

Example 5/94:

In order to provide sufficient support for the stone masonry arch designed as show, it is necessary to know the total weight W. Given the density is 2.40Mg/m 3

V W

  

r A

r

gV

r

A

   8 2   2 3 1  .

5 2 * 2 * 1 .

5 1 .

5 2    2 2 3 .

5

m

 2  3 

7 .

05

 

 3 2400 * 9 .

81 *  25 .

8

m

3 25 .

8 / 1000  608

kN

7 .

05

m

17

26-04-2020 18

Example:

26-04-2020

Determine the moment of inertia of the shaded area with respect to the x axis.

SOLUTION:

Compute the moments of inertia of the bounding rectangle and half-circle with respect to the x axis.

The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle.

19

26-04-2020

Solution:

a b A

  

120 -

1 2 4

r

3  

r

2 

a

  3   38 .

2

mm 81.8

mm

1 2    2  12 .

72  10 3

mm 2

• • •

Compute the moments of inertia of the bounding rectangle and half-circle with respect to the x axis.

Rectangle –

I x

 1 3

bh

3  1 3    3  138 .

2  10 6

mm

4

Half Circle –

I A A

  1 8 

r

4  1 8    4  25 .

76  10 6 mm 4

Moment of Inertia w.r.t. x’ –

I x

 

I A A

 

Aa

2   25 .

76  10 6   12 .

72  10 3   38 .

2  2  7 .

20  10 6

mm 4

Moment of Inertia w.r.t. x –

I x

x

 

Ab

2  7 .

20  10 6   12 .

72  10 3   81 .

8  2  92 .

3  10 6

mm 4

20

26-04-2020

Solution:

The moment of inertia of the shaded area is obtained by subtracting the moment of inertia of the half-circle from the moment of inertia of the rectangle

I x

I x

 45 .

9  10 6 mm 4 138 .

2  10 6 mm 4  92 .

3  10 6 mm 4 21

26-04-2020

Product of Inertia:

PI is important for problems involving unsymmetrical cross-sections and in calculation of MI about rotated axes.

Product of Inertia of area A w.r.t. x-y axes

I xy

 

xy dA

 

x y xydxdy

-

I xy

+

I xy

It may be +ve, -ve, or zero

+

I xy

-

I xy

22

26-04-2020

Product of Inertia:

Parallel axis theorem for products of inertia

I xy

I xy

x y A

When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero

23

26-04-2020

Rotation of Axes:

Note:

x

 

y

 

x

cos 

y

cos   

y

sin 

x

sin 

I x

'

I y

'

I x

'

y

'    

y

' 2

dA

x

' 2

dA

  

x

'

y

'

dA

  

y

cos  

x

cos   

x

sin   2

dA y

sin   2

dA

x

cos  

y

sin  

y

cos  

x

sin  

dA

sin 2  sin   cos 1   cos 2  cos 2 2  1 / 2 sin 2    1  cos 2  cos 2  sin 2 2    cos 2  24

26-04-2020

Rotation of Axes: Moments and product of inertia w.r.t. new axes x’ and y’ ?

I I x

y

I x

y

'   

I I x x

 2  2

I I y y I x

2 

I y

 

I I

sin

x x

 2  2 2 

I y I y

 cos cos 2  2   

I xy

cos 2 

I xy

sin 2 

I xy

sin 2 

Qs. Determination of axes about which the MI is a max or a min?

25

26-04-2020

Rotation of Axes:

I x’

+ I

y’

Adding first two eqns: = I

x

+ I

y

= I

z

The Polar MI @ O

I I x

y

I x

y

'   

I x I x

 2 

I I y y I x

2 

I y

2  

I I x x

sin  2  2 2 

I y I y

 cos 2  cos 2 

I xy

cos  

I xy I xy

2  sin 2  sin 2 

Angle which makes I

x’

and I

y’

either max or min can be found by setting the derivative of either I

x’

w.r.t. θ equal to zero:

dI d

x

' 

I

y

I x

 sin 2   2

I xy

cos 2 

or I

y’

 0

Denoting this critical angle by α

tan 2  

I y

2

I xy

I x

26

Rotation of Axes:

I I x

y

I x

y

'  

I x

 

I x

2 

I x

2  2

I y I y I y

 

I x I x

I y

2 

I y

2 sin 2   cos 2  cos 2 

I xy

cos 

I xy

I xy

2  sin 2  sin 2  tan 2  

I y

2

I xy

I x

26-04-2020   

two values of 2α which differ by π since tan2α = tan(2α+π) two solutions for α will differ by π/2 one value of α will define the axis of maximum MI and the other defines the axis of minimum MI

These two rectangular axes are called the principal axes of inertia

27

26-04-2020

Rotation of Axes:

I I x

y

I x

y

'   

I x I x

 2 

I I y y I x

2 

I y

2  

I I x x

sin  2  2 2 

I y I y

 cos 2  cos 2 

I xy

cos  

I xy I xy

2  sin 2  sin 2  tan 2  

I

2

I xy y

I x

 sin 2   cos 2 

I

2

I xy y

I x

Substituting in the third eqn for critical value of 2θ: I

x’y’

= 0

Product of Inertia I

x’y’

is zero for the Principal Axes of inertia

Substituting sin2α and cos2α in first two eqns for Principal Moments of Inertia:

I

max

I

min

I xy

@  

I x

 

I x

 0 2

I

2 

I y y

  1 2 1 2 

I

I x x

I y

 2  

I y

 2  4

I

2

xy

4

I

2

xy

28

26-04-2020

Mohr’s Circle of Inertia:

Following relations can be represented graphically by a diagram called Mohr’s Circle. For given values of I

x

, I

y

, & I

xy

values of I

x’

, I

y’

desired angle θ.

I x

 

I ave

 2 

I

2

x

y

, & I

R

2

x’y’

corresponding

I xy

I I

max min

I xy

@  

I x

 

I x

 0 2

I

2 

I y y

  1 2 1 2 

I I

x x

I y

I y

 2  2  

may be determined from the diagram for any

4

I

2

xy

4

I

2

xy I ave

I x

I y

2

R

  

I x

I y

2   2 

I

2

xy

I

At the points A and B, I

x’y’

= 0 and I

x’

is a maximum and minimum, respectively.

I

max, min 

I ave

R

29

26-04-2020

Construction of Mohr’s Circle of Inertia:

I

max

I

min 

I x

I I xy

@  

I x

 0 2 2 

I y y

  1 2 1 2 

I x

I y

 2  4

I

2

xy

I x

I y

 2  4

I

2

xy

Choose horz axis

Choose vert axis

MI PI Point A – known {I

x

, I

xy

} Point B – known {I

y

, -I

xy

} Circle with dia AB Angle α for Area

Angle 2α to horz (same sense)

I max

, I

min

Angle x to x’ = θ

Angle OA to OC = 2θ

Same sense Point C

Point D

I x’ I y’

, I

x’y’

30

26-04-2020 31

26-04-2020

Example (Product of Inertia):

Determine the product of inertia of the right triangle with respect to the x and y axes

I xy

 1 24

b

2

h

2

SOLUTION:

y

h

 1

x el

x x b dA

y dx

h

1

y el

 1 2

y

 1 2

h

1

x b x

 

dx b

Integrating

dI x

from

x

= 0 to

x

=

b

,

I xy

 

dI xy

 

x el y el dA

 0

b

x

  2

h

2 

h

2

b

 0

x

2 

x

2

b

x

3 2

b

2

x b

2

dx dx

h

2   

x

2 4 

x

3 3

b

x

4 8

b

2   

b

0 32

Example:

26-04-2020

Determine the moments of inertia I

x

and I

y

of the area of the thin semicircular ring about the x- and y-axes.

Also find the polar moment of inertia of the combined action of the three forces on the I

C

of the ring about its centroid C

.

33

26-04-2020

Solution:

As width of ring is very small so inner and outer radius is nearly same.

Complete ring: Polar Moment of inertia at

O

,

I O

Ar

2  2 

rtr

2  2 

r

3

t t<

And from our previous knowledge,

I O

I x

I y

Due to symmetry of complete ring,

I x = I y

I x

I y

I O

2  

r

3

t

Half ring: Evaluating MI

I x

I y

Polar Moment of inertia at

C ,

 1 2 

r

3

t I C

and 

I O

Ad

2

I O

 1 2

2 

r

3

t

 

r

3

t

2  

r

3

t

 

rt

2

r

 

I C

 

r

3

t

 1  4 2  0 .

5947 

r

3

t

 1 .

8684

r

3

t x

34

Example:

26-04-2020 Determine the moments and product of inertia of the area of the square with respect to the x’-y’ axes 35

Solution:

Rectangle moment of inertia

1

b

4

I x

b

b

3  3 3

I y

b

4 3

Product of inertia

I xy

b

2 

b

2 

b

2 

b

4 4

Rotation of axes,

I x

 

I y

 

I x

 2

I y I x

2 

I y

I x

I y

I x

2 

I y

2 cos 2  

I xy

sin 2  

b

4 3 cos 2  

I xy

sin 2  

b

4 3  0 

b

4 4 sin  2  30    0 .

1168

b

4  0 

b

4 4 sin  2  30    0 .

5498

b

4

I x

y

 

I x

I y

2 sin 2  

I xy

cos 2   0 

b

4 4 cos  2  30    0 .

125

b

4 26-04-2020 36

Example:

26-04-2020

Determine the orientation of the principal axes of inertia through the centroid of the angle section.

37

26-04-2020

Solution:

Product of inertia at centroid of a rectangle is zero by symmetry Product of inertia at

C I

xy

, I 0  

I

xy

, I

 12 .

5

d x d y

7 .

5

A

I

I

xy

, II 0  

I

xy

, II

12 .

5



d x d

7 .

5

y A

II   3 .

75  10 4 mm 4   3 .

75  10 4 mm 4

I xy

I xy

, I 

I xy

, II   7 .

5  10 4 mm 4

Moment of inertia at

C I x

, I 

I x

, I 

d x

2

A

I  1 12

   

12 .

5

  

 6 .

58  10 4 mm 4 38

26-04-2020

Solution (contd.):

I y

, I 

I y

, I 

d y

2

A

I  1 12

I I x

, II

y

, II 

I x

, II 

d x

2

A

II 

I y

, II 

d y

2

A

II  1  12 1 12

I

Combined

x

I x

, I 

I x

, II  18 .

16  10 4 mm 4

I y

I y

, I 

I y

, II  10 .

16  10 4 mm 4 7 .

5 12 .

5 7 .

5  7 .

58  10 4 mm 4

Principal axes

tan 2  

I y

2

I xy

I x

 2

 10 .

16 7 .

5

 18 .

16  1 .

875  11 .

58  10 4 mm 4  2 .

58  10 4 mm 4    31 .

0  39

26-04-2020

Example (Mohr’s Circle of Inertia):

The moments and product of inertia with respect to the x and y axes are I

x

= 7.24x106 mm 4 , I

y

2.61x106 mm 4 , and I

xy

= = 2.54x10

6 mm 4 . Using Mohr’s circle, determine

(a)

the principal axes about O, (b) the values of the principal moments about O, and (c) the values of the moments and product of inertia about the x’ and y’ axes.

40

26-04-2020

Example (Mohr’s Circle of Inertia):

I x

 7 .

24  10 6 mm 4

I y

 2 .

61  10 6 mm 4

I xy

  2 .

54  10 6 mm 4 SOLUTION: • Plot the points (

I x , I xy

) and (

I y ,-I xy

).

Construct Mohr’s circle based on the circle diameter between the points.

OC CD

 

I

1 2

ave

I x

  1 2

I

y I

x

 

I y

 2 .

315  4 .

925 10 6  10 mm 4 6 mm 4

R

DX

 2  3 .

437  10 6 mm 4 • Based on the circle, determine the orientation of the principal axes and the principal moments of inertia.

m

 23 .

8  tan 2 

m

DX CD

 1 .

097 2 

m

 47 .

6  41

26-04-2020

Example (Mohr’s Circle of Inertia):

OC

I ave

 4 .

925  10 6 mm 4

R

 3 .

437  10 6 mm 4 • Based on the circle, evaluate the moments

and product of inertia with respect to the

x’y’

axes.

The points

X’

and

Y’

corresponding to the x’ and y’ axes are obtained by rotating

CX

and

CY

counterclockwise through an angle θ= 2(60 o ) = 120 o . The angle that CX’ forms with the horz is f = 120 o - 47.6

o = 72.4

o .

I x

' 

OF

OC

C X

 cos  

I ave

R

cos 72 .

4

o I x

y

' 

F X

 

C Y

 sin  

R

sin 72 .

4

o I x

  5 .

96  10 6 mm 4

I y

' 

OG

OC

C Y

 cos  

I ave

R

cos 72 .

4

o I x

y

  3 .

28  10 6 mm 4

I y

  3 .

89  10 6 mm 4 42

26-04-2020 43

Following students are advised to meet the Instructor immediately

Div. I

Ankit Tamta (130104010)

Lehar Bhandari (130104033)

Div. III

Ananti Saroj (130121004)

Divya Kumar Meena (130121012)

Nikhil Anand (130121021)

Vikram Kaviya (130123042)

26-04-2020 44

26-04-2020 45