Neuro-Fuzzy Data Analysis - ICAR-CNR

Download Report

Transcript Neuro-Fuzzy Data Analysis - ICAR-CNR

Industrial Applications of
Neuro-Fuzzy Networks
Prof. Dr. Rudolf Kruse
University of Magdeburg
Faculty of Computer Science
Magdeburg, Germany
[email protected]
N
SF
EURO
UZZY
Example: Continously Adapting Gear Shift Schedule in VW New Beetle
classification of driver / driving situation
by fuzzy logic
fuzzification
inference
machine
defuzzification
gear shift
computation
interpolation
accelerator pedal
filtered speed of
accelerator pedal
number of
changes in
pedal direction
rule
base
sport
factor [t]
determination
of speed limits
for shifting
into higher or
lower gear
depending on
sport factor
gear
selection
sport factor [t-1]
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Continously Adapting Gear Shift Schedule: Technical Details
 Mamdani controller with 7 rules
 Optimized program
24 Byte RAM
AG4
}
on Digimat
702 Byte ROM
 Runtime 80 ms
12 times per second a new sport factor is assigned
 How to generate knowledge automatically from data?
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning from Examples (Observations, Databases)
 Statistics:
 Machine Learning:
 Neural Networks:
 Cluster Analysis:
parameter fitting, structure
identification, inference method,
model selection
computational learning (PAC
learning), inductive learning, learning
decision trees, concept learning, ...
learning from data
unsupervised classification
 Learning Problem is transformed into an optimization problem.
 How to use these methods in fuzzy systems?
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Function Approximation with Fuzzy Rules
y
if x is large then y is large
output value
x
current input value
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
t
How to Derive a Fuzzy Controller Automatically from Observed Process Data
ou
t
pu
• Function approximation
input
current input value
• Perform fuzzy cluster analysis of input-output data (FCM, GK, GG, ...)
• Project clusters
• Obtain fuzzy rules of the kind: „If x is small then y is medium“
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Fuzzy Cluster Analysis
 Classification of a given data set X = {x1, ..., xn}  p into c
clusters.
 Membership degree of datum xk to class i is uik.
 Representation of cluster i by prototype vi  p.
Formal: Minimisation of functional:
JX, U, v    uik  d2 v i, x k 
c
n
m
i1 k 1
under constraints n
u
ik
 0 for all i  1, ..., c
ik
 1 for all k  1, ..., n
k 1
c
u
i1
März 2001
N
SF
EURO
Rudolf Kruse
UZZY
Simplest Algorithm: Fuzzy-c-Means (FCM)
d v i , x k   v i  x k
2
2
Iterative Procedure (with random initialisation of prototypes vi)
 u 
n
uik 
1
 d2 v i , x k  
 2




j  1  d v j , x k 
c
1
m 1
and
vi 
m
xk
ik
k 1
n
 u 
m
ik
k 1
FCM is searching for equally large clusters in form of (hyper-)balls.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Examples
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Fuzzy Cluster Analysis
 Fuzzy C-Means: simple, looks for spherical
clusters of same size, uses Euclidean distance
 Gustafson & Kessel: looks for hyper-ellipsoidal
clusters of same size, distance via matrices
 Gath & Geva: looks for hyper-ellipsoidal clusters
of arbitrary size, distance via matrices
 Axis-parallel variations exist that use diagonal
matrices (computationally less expensive and less
loss of information when rules are created)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Fuzzy Cluster Analysis with DataEngine
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Construct Fuzzy Sets by Cluster Projection
u(x)
Approximation by a
triangular fuzzy set
1
Convex hull of the discrete
degrees of membership
Connection of the discrete
degrees of membership
x
Projecting a cluster means to project the degrees of membership
of the data on the single dimensions: Histograms are obtained.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
FCLUSTER: Tool for Fuzzy Cluster Analysis
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Introduction
 Building a fuzzy system requires
prior knowledge (fuzzy rules, fuzzy sets)
manual tuning: time consuming and error-prone
 Therefore: Support this process by learning
learning fuzzy rules (structure learning)
learning fuzzy set (parameter learning)
Approaches from Neural Networks can be used
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning Fuzzy Sets: Problems in Control
 Reinforcement learning must be used to compute an error
value
(note: the correct output is unknown)
 After an error was computed, any fuzzy set learning
procedures can be used
 Example: GARIC (Berenji/Kedhkar 1992)
online approximation to gradient-descent
 Example: NEFCON (Nauck/Kruse 1993)
online heuristic fuzzy set learning using a
rule-based fuzzy error measure
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Neuro-Fuzzy Systems in Data Analysis
 Neuro-Fuzzy System:
System of linguistic rules (fuzzy rules).
Not rules in a logical sense, but function
approximation.
Fuzzy rule = vague prototype / sample.
 Neuro-Fuzzy-System:
Adding a learning algorithm inspired by neural
networks.
Feature: local adaptation of parameters.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Example:
Prognosis of the Daily Proportional Changes of the DAX at
the Frankfurter Stock Exchange (Siemens)
 Database: time series from 1986 - 1997
DAX
Composite DAX
German 3 month interest rates
Return Germany
Morgan Stanley index Germany
Dow Jones industrial index
DM / US-$
US treasury bonds
Gold price
Nikkei index Japan
Morgan Stanley index Europe
Price earning ratio
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Fuzzy Rules in Finance
 Trend Rule
IF
DAX = decreasing AND US-$ = decreasing
THEN DAX prediction = decrease
WITH high certainty
 Turning Point Rule
IF
DAX = decreasing AND US-$ = increasing
THEN DAX prediction = increase
WITH low certainty
 Delay Rule
IF
DAX = stable AND US-$ = decreasing
THEN DAX prediction = decrease
WITH very high certainty
 In general
IF
x1 is m1 AND x2 is m2
THEN y = h
WITH weight k
März 2001
Rudolf Kruse
N
SF
EURO
UZZY
Classical Probabilistic Expert Opinion Pooling Method
 DM analyzes each source (human expert, data +
forecasting model) in terms of (1) Statistical accuracy,
and (2) Informativeness by asking the source to asses
quantities (quantile assessment)
 DM obtains a “weight” for each source
 DM “eliminates” bad sources
 DM determines the weighted sum of source outputs
 Determination of “Return of Invest”
März 2001
Rudolf Kruse
N
SF
EURO
UZZY
 E experts, R quantiles for N quantities
 each expert has to asses R·N values
 stat. Accuracy:
 1   R2 2 N  I s, p ,
R
si
I s, p    si ln
p
i 0
C
 information score:
R 1
1 N
pr 1 
I   lnvi, R 1  vi,o    pr 1 ln

N i 1
vi,r  vi,r 1 
r 1
 weight for expert e:
E
we 
e
 outputt=  we  outputt
T
e 1

eE1ce  I e  id e ce 
 roi =  yt   sign outputtDM
t 1
März 2001
ce  I e  id ce 

N
SF
EURO
Rudolf Kruse
UZZY
Formal Analysis
 Sources of information
R1
rule set given by expert 1
R2
rule set given by expert 2
D
data set (time series)
 Operator schema
fuse (R1, R2)fuse two rule sets
induce(D)
induce a rule set from D
revise(R, D)
revise a rule set R by D
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Formal Analysis
 Strategies:
 fuse(fuse (R1, R2), induce(D))
 revise(fuse(R1, R2), D)

 fuse(revise(R1, D), revise(R2, D))
 Technique: Neuro-Fuzzy Systems
 Nauck, Klawonn, Kruse, Foundations of Neuro-Fuzzy
Systems, Wiley 97
 SENN (commercial neural network environment, Siemens)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
From Rules to Neural Networks
1. Evaluation of membership degrees
2. Evaluation of rules (rule activity)
n
r
ml: IR  [0,1] ,
x   j l 1 m c(,js)  xi 
D
3. Accumulation of rule inputs and normalization
NF: IR  IR, x  l 1 wl
n
r

kl m l  x 
r
j 1
k j m j x 
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Neuro-Fuzzy Architecture
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
The Semantics-Preserving Learning Algorithm
Reduction of the dimension of the weight space
1. Membership functions of different inputs share their parameters,
e.g.
stable
stable
mdax
 mcdax
2. Membership functions of the same input variable are not allowed to pass
each other, they must keep their original order,
e.g.
m decreasing  m stable  m increasing
Benefits:
 the optimized rule base can still be interpreted
 the number of free parameters is reduced
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Return-on-Investment Curves of the Different Models
Validation data from March 01, 1994 until April 1997
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
A Neuro-Fuzzy System
 is a fuzzy system trained by heuristic learning
techniques derived from neural networks
 can be viewed as a 3-layer neural network with fuzzy
weights and special activation functions
 is always interpretable as a fuzzy system
 uses constraint learning procedures
 is a function approximator (classifier, controller)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning Fuzzy Rules
 Cluster-oriented approaches
=> find clusters in data, each cluster is a rule
 Hyperbox-oriented approaches
=> find clusters in the form of hyperboxes
 Structure-oriented approaches
=> used predefined fuzzy sets to structure the
data space, pick rules from grid cells
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Hyperbox-Oriented Rule Learning
y
Search for hyperboxes in
the data space
Create fuzzy rules by
projecting the hyperboxes
Fuzzy rules and fuzzy
sets are created at the
same time
x
Usually very fast
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Hyperbox-Oriented Rule Learning
y
y
y
x
x
y
x
x
 Detect hyperboxes in the data, example: XOR function
 Advantage over fuzzy cluster anlysis:
 No loss of information when hyperboxes are represented as
fuzzy rules
 Not all variables need to be used, don‘t care variables can be
discovered
 Disadvantage: each fuzzy rules uses individual fuzzy sets,
i.e. the rule base is complex.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Structure-Oriented Rule Learning
y
large
Provide initial fuzzy sets for
all variables.
medium
The data space is partitioned
by a fuzzy grid
Detect all grid cells that
contain data (approach by
Wang/Mendel 1992)
small
Compute best consequents and
select best rules (extension by
Nauck/Kruse 1995,
x NEFCLASS model)
small
März 2001
medium
large
Rudolf Kruse
N
SF
EURO
UZZY
Structure-Oriented Rule Learning
 Simple: Rule base available after two cycles through the
training data
 1. Cycle: discover all antecedents
 2. Cycle: determine best consequents
 Missing values can be handled
 Numeric and symbolic attributes can be processed at the
same time (mixed fuzzy rules)
 Advantage: All rules share the same fuzzy sets
 Disadvantage: Fuzzy sets must be given
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning Fuzzy Sets
 Gradient descent procedures
only applicable, if differentiation is possible, e.g.
for Sugeno-type fuzzy systems.
 Special heuristic procedures that do not use
gradient information.
 The learning algorithms are based on the idea of
backpropagation.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning Fuzzy Sets: Constraints
 Mandatory constraints:
 Fuzzy sets must stay normal and convex
 Fuzzy sets must not exchange their relative
positions (they must not „pass“ each other)
 Fuzzy sets must always overlap
 Optional constraints
 Fuzzy sets must stay symmetric
 Degrees of membership must add up to 1.0
 The learning algorithm must enforce these
constraints.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Different Neuro-Fuzzy Approaches
 ANFIS (Jang, 1993)
no rule learning, gradient descent fuzzy set learning, function approximator
 GARIC (Berenji/Kedhkar, 1992)
no rule learning, gradient descent fuzzy set learning, controller
 NEFCON (Nauck/Kruse, 1993)
structure-oriented rule learning, heuristic fuzzy set learning, controller
 FuNe (Halgamuge/Glesner, 1994)
combinatorical rule learning, gradient descent fuzzy set learning, classifier
 Fuzzy RuleNet (Tschichold-Gürman, 1995)
hyperbox-oriented rule learning, no fuzzy set learning, classifier
 NEFCLASS (Nauck/Kruse, 1995)
structure-oriented rule learning, heuristic fuzzy set learning, classifier
 Learning Fuzzy Graphs (Berthold/Huber, 1997)
hyperbox-oriented rule learning, no fuzzy set learning, function approximator
 NEFPROX (Nauck/Kruse, 1997)
structure-oriented rule learning, heuristic fuzzy set learning, function approx.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Example: Medical Diagnosis
 Results from patients tested for breast cancer
(Wisconsin Breast Cancer Data).
 Decision support: Do the data indicate a malignant or a benign
case?
 A surgeon must be able to check the classification for
plausibility.
 We are looking for a simple and interpretable classifier:
knowledge discovery.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Example: WBC Data Set
 699 cases (16 cases have missing values).
 2 classes: benign (458), malignant (241).
 9 attributes with values from {1, ... , 10}
(ordinal scale, but usually interpreted as a numerical
scale).
 Experiment: x3 and x6 are interpreted as nominal
attributes.
 x3 and x6 are usually seen as „important“ attributes.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Applying NEFCLASS-J
 Tool for developing Neuro-Fuzzy Classifiers
 Written in JAVA
 Free version for research available
 Project started at Neuro-Fuzzy Group of University of
Magdeburg, Germany
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
NEFCLASS: Neuro-Fuzzy Classifier
Output variables (class labels)
Unweighted connections
Fuzzy rules
Fuzzy sets (antecedents)
Input variables (attributes)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
NEFCLASS: Features
 Automatic induction of a fuzzy rule base from data
 Training of several forms of fuzzy sets
 Processing of numeric and symbolic attributes
 Treatment of missing values (no imputation)
 Automatic pruning strategies
 Fusion of expert knowledge and knowledge obtained
from data
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Representation of Fuzzy Rules
Example: 2 Rules
c1
c2
R1: if x is large and y is small, then class is c1.
R2: if x is large and y is large, then class is c2.
R1
R2
The connections x  R1 and x  R2
are linked.
large
The fuzzy set large is a shared weight.
small
large
x
y
That means the term large has always the
same meaning in both rules.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
1. Training Step: Initialisation
Specify initial fuzzy partitions for all input variables
c2
small
medium
c1
large
y
x
x
y
small
medium
large
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
2. Training Step: Rule Base
Algorithm:
Variations:
for (all patterns p) do
find antecedent A,
such that A( p) is maximal;
if (A  L) then add A to L;
end;
for (all antecedents A  L) do
find best consequent C for A;
create rule base candidate R = (A,C);
Determine the performance of R;
Add R to B;
end;
Select a rule base from B;
Fuzzy rule bases can
also be created by using
prior knowledge, fuzzy
cluster analysis, fuzzy
decision trees, genetic
algorithms, ...
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Selection of a Rule Base
e of a Rule :
Pe rform anc
1
Pr 
N
N
  1
p 1
c
 
Rr x p , w ith
0 if class(x p )  con( Rr ),

c
1 otherw ise.

• Order rules by performance.
• Either select
the best r rules or
the best r/m rules per class.
• r is either given or is
determined automatically such
that all patterns are covered.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Rule Base Induction
NEFCLASS uses a modified Wang-Mendel procedure
c2
medium
c1
large
y
R2
R3
small
R1
x
x
y
small
medium
large
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Computing the Error Signal
Fuzzy Error ( jth output):
Error Signal
E j  sgn(d )  1   (d ) , w ithd  t j  o j
c1
R1
c2
R2
 ad

 d max



2
and  :   0, 1,  (d )  e
(t : correctoutput, o : actual output)
R3
Rule Error:
x
y
Er   r 1  r    Econ( Rr ) , w ith0    1
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
3. Training Step: Fuzzy Sets
Example:
triangular
membership
function.
Parameter
updates for an
antecedent
fuzzy set.
x a
b  a

c  x
m a ,b,c :   [0,1], m a ,b,c ( x)  
c  b

0


if x  [a, b) 


if x  [b, c] 


otherw ise

if E  0
 m ( x)
f 
 1  m ( x)  otherw ise
b  f  E  c  a   sgn( x  b)
a   f  E  b  a   b
c  f  E  c  b   b
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Training of Fuzzy Sets
initial fuzzy set
m(x)
reduce
enlarge
0.85
medium
large
y
small
0.55
0.30
x
x
small
medium
large
Heuristics: a fuzzy set is moved away from x (towards x)
and its support is reduced (enlarged), in order to
reduce (enlarge) the degree of membership of x.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Training of Fuzzy Sets
Algorithm:
Variations:
repeat
for (all patterns) do
accumulate parameter updates;
accumulate error;
end;
modify parameters;
until (no change in error);
local
minimum
• Adaptive learning rate
• Online-/Batch
Learning
• optimistic learning
(n step look ahead)
Observing the error on
a validation set
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Constraints for Training Fuzzy Sets
• Valid parameter values
• Non-empty intersection of
adjacent fuzzy sets
1
• Keep relative positions
2
• Maintain symmetry
• Complete coverage
(degrees of membership add up to
1 for each element)
3
Correcting a partition after
modifying the parameters
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
4. Training Step: Pruning
Goal: remove variables, rules and fuzzy sets, in order to
improve interpretability and generalisation.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Pruning
Algorithm:
Pruning Methods:
repeat
select pruning method;
1. Remove variables
(use correlations, information
gain etc.)
repeat
execute pruning step;
train fuzzy sets;
2. Remove rules
(use rule performance)
if (no improvement)
then undo step;
3. Remove terms
(use degree of fulfilment)
until (no improvement);
4. Remove fuzzy sets
(use fuzziness)
until (no further method);
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
WBC Learning Result: Fuzzy Rules
R1: if uniformity of cell size is small and bare nuclei is fuzzy0 then benign
R2: if uniformity of cell size is large then malignant
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
WBC Learning Result: Classification Performance
Predicted Class
malign
malign 228 (32.62%)
benign
13
not
classified
sum
(1.86%) 0
(0%) 241
(34.99%)
benign 15 (2.15%) 443 (63.38%) 0
243 (34.76%) 456 (65.24%) 0
sum
(0%) 458
(0%) 699
(65.01%)
(100.00%)
Estimated Performance on Unseen Data (Cross Validation)
 NEFCLASS-J:
95.42%
 NEFCLASS-J (numeric): 94.14%
 Discriminant Analysis: 96.05%
 Multilayer Perceptron:
94.82%
 C 4.5:
 C 4.5 Rules:
95.40%
95.10%
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
WBC Learning Result: Fuzzy Sets
1.0
uniformity of cell size
lg
sm
0.5
0.0
1.0
2.8
4.6
6.4
8.2
10.0
8.2
10.0
bare nuclei
1.0
0.5
0.0
1.0
2.8
4.6
6.4
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
NEFCLASS-J
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Resources
Detlef Nauck, Frank Klawonn & Rudolf Kruse:
Foundations of Neuro-Fuzzy Systems
Wiley, Chichester, 1997, ISBN: 0-471-97151-0
Neuro-Fuzzy Software (NEFCLASS, NEFCON, NEFPROX):
http://www.neuro-fuzzy.de
Beta-Version of NEFCLASS-J:
http://www.neuro-fuzzy.de/nefclass/nefclassj
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Conclusions
 Neuro-Fuzzy-Systems can be useful for knowledge discovery.
 Interpretability enables plausibility checks and improves
acceptance.
 (Neuro-)Fuzzy systems exploit tolerance for sub-optimal
solutions.
 Neuro-fuzzy learning algorithms must observe constraints in
order not to jeopardise the semantics of the model.
 Not an automatic model creator, the user must work with the
tool.
 Simple learning techniques support explorative data analysis.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Download NEFCLASS-J
Download the free version of NEFCLASS-J at
http://fuzzy.cs.uni-magdeburg.de
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Fuzzy Methods in Information Mining: Examples
here: Exploiting quantitative and qualitative
information
 Fuzzy Data Analysis (Projects with Siemens)
 Information Fusion (EC Project)
 Dependency Analysis (Project with Daimler/Chrysler)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Analysis of Daimler/Chrysler Database
 Database: ~ 18.500 passenger cars
> 100 attributes per car
 Analysis of dependencies between special equipment and
faults.
 Results used as a starting point for technical experts looking
for causes.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Learning Graphical Models
data
+
prior information
A
Inducer
B
C
local models
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
The Learning Problem
known structure
B
A
C
complete data
A
<a4,
<a3,
B
b3,
b2,
C
c1>
c4>
Statistical Parametric
Estimation (closed from eq.):
statistical parameter fitting,
ML Estimation,
Bayesian Inference, ...
incomplete data Parametric Optimization:
(missing values,
hidden variables,...)
A
<a4,
<a3,
B
?,
b2,
EM,
gradient descent, ...
C
c1>
?>
unknown structure
B
A
C
Discrete Optimization over
Structures (discrete search):
likelihood scores,
MDL
Problem:
search complexity
heuristics
Combined Methods:
structured EM
only few approaches
Problems:
criterion for fit?
new variables?
local maxima?
fuzzy values?
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Possibility Theory
 fuzzy set induces possibility
 A   sup m 
1
A
mcloudy
2
 0  55, 60 
3
 axioms
50
65
85
100

 0  0
    1
 A  B  max  A ,  B
 A  B  min  A ,  B
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
General Structure of (most) Learning Algorithms for Graphical Models
 Use a criterion to measure the degree to which a
network structure fits the data and the prior
knowledge
(model selection, goodness of hypergraph)
 Use a search algorithm to find a model that
receives a high score by the criterion
(optimal spanning tree, K2: greedy selection of
parents, ...)
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Measuring the Deviation from an Independent Distribution
Probability- and Information-based Measures
 information gain *
identical with mutual information
 information gain ratio *
 g-function (Cooper and Herskovits)
 minimum description length
 gini index *
Possibilistic Measures
 expected nonspecificity
 specificity gain
 specificity gain ratio
(Measures marked with * originated from decision tree learning)
März 2001
Rudolf Kruse
N
SF
EURO
UZZY
Data Mining Tool Clementine
N
SF
EURO
März 2001
Rudolf Kruse
UZZY
Analysis of Daimler/Chrysler Database
electrical
roof top
air conditioning
faulty
battery
type of
engine
faulty
compressor
type of
tyres
slippage
control
faulty
brakes
Fictituous example:
There are significantly more faulty batteries, if both
air conditioning and electrical roof top are built
into the car.
N
SF
EURO
März 2001
Rudolf Kruse
UZZY