EE 372 Fundamentals of Power Systems
Download
Report
Transcript EE 372 Fundamentals of Power Systems
EE 372
Fundamentals of Power Systems
Textbook:
John J. Grainger, William D. Stevenson, Jr., “Power System
Analysis”, McGraw-Hill, Inc., 1994.
Objective:
To teach the fundamental concepts of electric power system engineering.
Basics
Power: Instantaneous consumption of energy
Power Units
Watts = voltage x current for dc (W)
kW
–
1 x 103 Watt
MW
–
1 x 106 Watt
GW
–
1 x 109 Watt
Basics
Energy: Amount of Work
Energy Units (for electrical power)
Wh
-1 x 100 Watthour
kWh
–
1 x 103 Watthour
MWh –
1 x 106 Watthour
GWh –
1 x 109 Watthour
Relationship of power and energy
Energy Consumed
Average Power
W
P
t
Duration
Sinusoidal Signals
Circular rotation of a magnetized rotor in Synchronous Generator
produces sinusoidal voltage in stator windings due to FARADAY LAW.
(Look at EE 471 Notes)
Sinusoidal Signals
THREE-PHASE SYNCHRONOUS GENERATOR
Sinusoidal Signals
How do you write the mathematical
equation for this periodic function?
?
?
Sinusoidal Signals
Period
: 0.01 s.
Frequency : 100 Hz.
(t ) 200cos(2100t )
Sinusoidal Signals
(t ) 200sin(2 50t ) 100
Period
: 0.02 s.
Frequency : 50 Hz.
OR
(t ) 200 cos( 2 50 t ) 100
2
Sinusoidal Signals
(t ) 100cos(2 50t )
(t ) 100sin(2 50t )
(t ) 100 cos( 2 50 t )
2
sin( ) cos( )
2
(t ) 100 sin( 2 50 t )
2
cos( ) sin( )
2
Sinusoidal Signals
400
Voltage
Current
200
0.0200
0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
-100
0.0025
0
0.0000
-0.0025
-0.0050
-0.0075
-0.0100
-0.0125
-0.0150
-0.0175
100
-0.0200
Volts, Amperes
300
-200
?
-300
-400
Time (seconds)
?
Peak voltage : 310 V.
Period
: 0.02 s.
Frequency : 50 Hz.
(t ) Vm sin(2 f t ) 310sin(314t )
Peak current : 150 A.
Period
: 0.02 s.
Frequency : 50 Hz.
i(t ) I m sin(2 f t ) 150sin(314t 2.355)
1350
radian
Complex Numbers
Euler’s Formula : Relates exponential and sinusoidal functions
Rectangular
Notation
Polar
Notation
R
Im
R
j
z x j y R e R cos( ) j R sin( )
R z x2 y 2
y
arctan
x
Re
Attention:
z 1 j
arctan( 1)
z 1 j
4
450
45 0
450 1800 1350
Complex Numbers
Addition and subtraction of complex numbers are easier with
the rectangular notation.
(a j b) (c j d ) (a c) j (b d )
Multiplication and division of complex numbers are easier with
the polar notation.
( A ).(B ) ( A.B)( )
A A
( )
B B
Attention:
Rectangular
Polar
Phasors
Phasors are complex numbers used to represent sinusoids.
Phasor representation of a sinusoidal function:
(t ) Vm cos(t )
V Vm e j Vm
Phasor
If we multiply phasor
V
by
e j t
and apply Euler’s formula
Ve j t Vm e j e j t Vme j ( t ) Vm cos(t ) j Vm sin(t )
(t ) e Ve j t
Phasors
Consider the derivative of sinusoidal signal represented as a
phasor
Derivative:
d
d
j t
Ve
Vm e j e j t j Vm e j e j t j Ve j t
dt
dt
d
dt
j
Phasors
Examples:
Inductor
Capacitor
d i (t )
L
(t )
dt
d (t )
C
i (t )
dt
d I e j t
L
Ve j t
dt
d V e j t
C
I e j t
dt
j L I e j t Ve j t
j L I V
j C V e j t I e j t
j C V I
Phasors
(t )
I
i (t )
360
Ref.
V
(t ) 311cos(2 50t )
Vrms
311
220 V
2
V 22000 V
i (t ) 141 cos( 2 50 t )
5
141
I rms
100 A
2
I 100360 A
Important: In power systems, RMS values are used for the magnitudes.
Phasors
20
i(t)
v(t)
10
second
0.2
0.1
0.1
10
20
0.2