Transcript Slide 1

The Quantized Free Electron Theory
Jellium model:
Electron “sees” effective smeared potential

Energy E

electrons shield potential to a large
extent
+
+
+
+
+
+
+
Nucleus with
localized core
electrons
+
Spatial coordinate x
Electron in a box
In one dimension:
In three dimensions:
2

 (r )  V(r ) (r )  E (r )
2m
where
V0  const. f or 0  x, y, z  L

V( x, y, z )  
 otherw ise


2
2k
2 2
E

k x  k 2y  k 2z
2m
2m

L

L


L
where k x  nx , k y  n y , k z  nz

h2
E
n2x  n2y  n2z
2
8mL
and

nx , ny , nz  1, 2, 3,...
 2
(r )   
L 
3/ 2
sin k x x sin k y y sin k z z
+

+
+
+
+
+
+
+
+
+
+
+
0
+
x
+
L
+
+
Periodic boundary conditions:
Fixed boundary conditions: ( x  0)  0  ( x  L)
( x  L, y  L, z  L)  ( x, y, z)
“free electron parabola”
 2k x
2m
2
1
(r )   
L 
kx 
dE
3/ 2
eikr
2
2
2
nx , k y 
ny , k z 
nz
L
L
L
and nx , ny , nz  0,  1,  2,  3,...
dk x 
# of states
in [E, E  dE]
2
L
Remember the concept of
kx
density of states
1. approach
use the technique already applied for phonon density of states
~
D(E)   (E  E(k ))
where D(E) :
k
E1  E
~
D
 (E)dE  
E1
k
1~
D(E)
V
Density of states per unit volume
E1  E
 (E  E(k )) dE  1  1  1  1  4
E1
(E  E(k1 ))
E(k1 ) E(k 2 )
E
E
~
D(E)   (E  E(k ))
k

ky
k
 2
3
2
L
2
 2 
)   
V
L 
3
Volume(
kx
kz
3
d
 k
1/ Volume occupied by a state in k-space
2
L
2
L

V
3
Independent from
 and 
Independent from
 and 
2
2k
 2k 2

Free electron gas: E 
2m
2m
k
d3 k  4k 2dk
1
2mE

dk 
1 m
dE
 2E
k2
dk
1~
1
2mE 1 m
D(E)  D(E) 
4 (E  E(k ))
dE
3
2
V
 2E

2
D(E)  2
1/ 2
3/ 2
1 2 m
2 2
3
E
1  2m 
D(E)  2  2 
2   
3/ 2
E
Each k-state can be occupied with 2 electrons of spin up/down
2. approach
calculate the volume in k-space enclosed by the spheres
 2k 2
E(k ) 
 const.
2m
E(k )  dE  const.
and
ky
2
L
kx
k2 
2mE
2
4k 2 dk
~
# of states between spheres with k and k+dk : D(k )dk 
2 / L 3
dk 
1 m
dE
 2E
2 spin states
with
1~
D(E)  2 D(E)
V
1
D(E) 
22
 2m 
 2 
 
3/ 2
E
D(E)
D(E)dE =# of states in dE / Volume
E’
E’+dE
E
Statistics of the electrons (fermions)
Fermions are indistinguishable particles which obey the Pauli exclusion principle
T=0
E
Let us distribute
4 electrons spin
4 electrons spin
En=6
En=5
EF
En=4
1
f(E,T=0)
En=3
En=2
En=1
Probability that a qm state is occupied
Occupation
number 0
for state
E  En4
Occupation
number 1
for states
E  En4 : EF
of a given spin
x
Fermi Dirac distribution function at T>0
1
f (E, T ) 
e
E 
kBT
here chemical
potential
1
  EF
Fermi energy
With accuracy sufficient for many estimations: f(E,T) linearized at EF
More detailed approach to Fermi statistics
The grand canonical ensemble
Particle reservoir
U   En n
Average energy
n
N   Nn n Average particle #
System

n
1   n
n
Normalized
probabilities
T=const.
Heat Reservoir R
E    i ni
Now we consider independent particles
i
U  E    i  ni 
Total energy of
N fermion system
occupation # ni=0,1
of single particle state i with energy i
i
N   ni     ni 
i
i
where  n j 

( n1 ,n2 ,...)
n j  (n1, n2 ,...)
average occupation of state j is given by
 U 
 F 
 G 






 N S,V  N  T,V  N  T,P
Chemical potential
 n j 
  (   i ) ni
n
e
 j
For details see
& additional info see
{ni }
  (   i ) ni
e

 (n1 , n2 ,...)
{ni }
where the summation
 ...
n j 
 (  i ) ni
n
e
 j
means
 n j 
 (  i ) ni
e


{ni }
...
Repeat this step
( n1 , n2 ,...)

{ni }


e
n1
e
n1

   1  n1

n je
n2 , n3 ,...
   1  n1


e
 n je
i 2
    i ni
i 2
... 
n j 0
e
nj
n2 , n3 ,...
 n j   f ( j , T ) 
1
    i ni
1
e  ( i   )  1
    j  n j
    j  n j
The Fermi gas at T=0
f(E,T=0)
D(E)
1
EF
E
EF0
#of states in [E,E+dE]/volume

E0
F
1
n   D(E)f (E, T )dE  D(E) dE 
2

2

0
0
Electron density
T=0
Probability that state is occupied
E
Fermi energy
depends on T
 2m 
 2 
 
0
3 / 2 EF

E dE
0


2

0
2 2/3
EF 
3 n
2m
E0
F
1
Energy of the electron gas @ T=0: U0   E D(E) dE 
2
2

0
1  2m 

2  2 
2   
3/ 2
 2m 
 2 
 
0
3 / 2 EF
E
E dE
0
2 0 5 / 2 1  2m 3 / 2 1 0 0 3 / 2
EF 
EF EF
2  2 
5
   5


2

0
2 2/3
EF 
3 n
2m
3
U0  n EF0
5
there is an average energy of 3 EF0 per electron without thermal stimulation
5
with electron density n  1022
1
cm3
we obtain EF0  4  12 eV  k B T 
1
eV @ T  300K
40
Click for a table of Fermi energies,
Fermi temperatures and Fermi velocities
only a few electrons in the vicinity of EF can be scattered by thermal energy
into free states
Specific heat much smaller than expected from classical consideration
Specific Heat of a Degenerate Electron Gas
Density of occupied states
here: strong deviation from classical value
D(E)
energy of
electron
state
#states in [E,E+dE]

U  E
0
D(E) f (E, T )dE
probability of occupation,
average occupation #
2kBT
Before we calculate U let us estimate:
EF
E
increase energy from EF  kBT to EF  kBT
These
1 D(EF )
2k B T
2
2
U  D(EF ) kBT  
2
# of electrons
kBT
n kBT
EF
π2
Cel 
D(EF ) kB2 T
3
U  D(EF ) kBT
2
subsequent more precise calculation


Calculation of Cel from U  E D(E)f (E, T )dE
0

f
 U 
Cel  
dE 
   E D(E)
T
 T  V 0

f
 E  EF  D(E) T dE
0
Trick:
n
0  EF
 EF
T


0
D(E)
f
dE
T
EEF
kB T
f E  EF
e

2
T k BT 2  EEF

 e kBT  1




Significant contributions only in the vicinity of EF
D(E)

f
Cel   E  EF  D(E)
dE
T
0
D(E)  D(EF )

Cel  D(EF )
f


E

E
F

T
0
with
dE
f
x
ex

T T e x  1 2
E  EF
x :
and dE  kBT dx
k BT
Cel 
D(EF )

x 2e x
EF / kBT

Cel 
k B2 T
D(EF )


decreases rapidly to zero for x   

k B2 T
E
EF
e
x
x 2e x

1
 e x  12

2
dx
2
3
dx
2 2
Cel 
k BT D(EF )
3
2 2
Cel 
k BT D(EF )
3
2
k T
Cel  n kB B
2
EF
1  2m 
with D(EF ) 


22   2 
in comparison with
 1
3/ 2
EF
Cel


2

0
2 2/3
3 n
and EF 
2m
classical

3
n kB
2
for relevant temperatures
Heat capacity of a metal:
C  T  AT
3
electronic contribution
W.H. Lien and N.E. Phillips, Phys. Rev. 133, A1370 (1964)
lattice contribution
@ T<<ӨD
Selected phenomena which don’t require detailed knowledge of the band structure
Temperature dependence of the electrical resistance

T
 T5
residual
T
Impurities: temperature independent imperfection scattering
phonon scattering
Scattering of electrons: deviations from a perfect periodic potential
Matthiessen’s rule:
(T)  residual   phon (T)
Simple approach to understand
phon  T
for T>>ӨD
e2 n
Remember Drude expression:  
m

1 1

 
scattering rate
scattering cross section
1
N


V
vF

   u2
scattering cross section
Fermi velocity of electrons:
u  u0 cos t
1
2
u  u0
2
vF  2EF / m
#of scattering centers/volume
u
2
1

3N
D

u
2
D()d 
0
9N
D
3
1
3N
D

0
3 
1 0 2 9N 2

u

d

3
3
M

2
D
D

2
compare lecture notes:
Thermal Properties of Crystal Lattices
E( ) 
2
1
M2u0
2
D

0


1

1
   
d
2


kB T
e
1



1

1
     

2

e kB T  1 

u2 
u
3 
3
D M
2

D

0


1

1
   
d
2

e kBT  1 

kBT 2
3
MD
3
D / T


0
with x 

kBT
and d 
kBT
dx

1 
1
x  x
dx
 2 e 1
Let us consider the high temperature limit: T>>ӨD
u
2

kBT 2
3
MD
3

D / T

0
Note:
T5 –low temperature dependence
not described by this simple approach
3 2 T
1 
1
x  x
dx 
M kB D 2
 2 e 1
1 
1
x  x
 1
2
e  1  x0

Lindemann melting temperature TM: u
2
TM

1 1
  u2  T
 
emperical value
3  2 TM

where
M k B D 2
u2
 0.1
average atomic
spacing
 xm rs 
2
TM
Thermionic Emission
Finite barrier height of the potential
E
Evac

 : Evac  EF work function
EF
 2k 2x
 EF  
2m
Current density
for homogeneous velocity
jx  q n v x
x
generalized
q
jx 
V
 v x (k)
k
Current density
for k-dependent velocity


jx 
q
Again:
k
Since
V
 2
3
2
3
3
d
 k
Spin degeneracy
2q 
3

 v x (k)d kk 23 m
Occupied and
2 2
x
2m
 EF  


 dk ydk z min
 dk xk x f (E(k, T))

kx
  kBT
Fermi distribution approximated by Maxwell Boltzmann distribution
1
f (E, T) 
e
EEF
kBT
approximated
f (E, T )  e
EF E
kBT
e
EF
kB T
 2 ( k 2x k 2y k 2
z)
e
2m kBT
1
2q 
jx 
23 m

 2k 2y

2m kBT
dk
e
 y
 dk ze


 2k 2
z
2m kBT

mindk xk xe
kx
 2k 2x
2m kBT
e
EF
kBT
Let us investigate the integral

mindk xk x e
 2k 2x
2m k B T
e
EF
kBT
kx
1

2

 d(k x ) e
2
 2k 2x
2m k B T
2m(EF   ) /  2
e
EF
kB T
mk B T

e
2


kB T
 2k 2x
 EF  
2m

Remember integrals of the type:

 dk ze
 2k 2
z
2m kBT

x
dk z 

2m k B T

k z
2m k B T
2m kBT
dx


e

 x2
2m k BT
dx 


2 q  mk BT 2m k BT kBT
jx 
e
3
2
2

2 m 
jx 
4 m e
2
(
k
T
)
e
B
3
h
Richardson-Dushman

kBT
Vacuum tube
Typical value of
Tungsten:

  4.5 eV
A (1-r)=0.72 X 106 A/m2 K
Universal constant: A=1.2 X 106 A/m2K
Reflection at the potential step
jx 
4 m e 2
2
k
(
1

r
)
T
e
B
3
h

kB T
Richardson Constant
Owen Willans Richardson
Nobel prize in 1928
"for his work on the thermionic phenomenon and
especially for the discovery of the law named after him".
Field-Aided Emission
Image potential
E
Evac


Electric field in x-direction
V( x)  x Ex
EF
x
@ very high electric fields of  108 V / m tunneling through thin barrier
cold emission