Transcript Folie 1

Neutrino Physics
Caren Hagner
Universität Hamburg
Part 3: Absolute neutrino mass
Introduction
beta decay
double beta decay
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Nature of Neutrino Mass I
Neutrino fields v(x) with mass m are described by the Dirac equation:
(i    m)v( x)  0
4 component spinor
The left-handed and right-handed components are:
1 5
vR ( x ) 
v( x )
2
15
vL ( x ) 
v( x )
2
2 components each
This leads to a system of two coupled equations:
i   vL  mvR  0
i   vR  mvL  0
With m=0 one obtains the decoupled Weyl equations:
i   vL,R  0
From Goldhaber experiment one knows that vL is realized.
With m=0 there is no need to have vR.
Therefore there were no vR in the Standard Model.
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Dirac Mass Term
The neutrino mass term in L could have exactly the same form
as the mass term of the quarks and charged leptons:
LD  mvRvL  h.c.
m
vR
vL
Dirac mass term
Lepton number is conserved!
Must add vR (right handed SU(2) singlets) to standard model!
Problem: When the mechanism is the same,
why are the masses so small?
mt = 174.3 ± 5.1 GeV; mb = (4.0-4.5) GeV;
mτ = 1776.99 ± 0.29 MeV; m3 < 2eV
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Majorana Particles
Because neutrinos carry no electric charge
(and no color charge), there is the possibility:
particle ≡ anti-particle
Majorana particle
particle 
anti-particle (charge conjugate field):
c
for a Majorana particle:  M   M
 c  C T
But what about experiments?
vveLe 3737Cl
Cl
3737Ar
Aree-37
37
-37
37
v

Cl

Ar

e
Anti-neutrinos(reactor): veR
e  Cl Ar  e
Neutrinos (solar):
observed!
not observed!
There are two different states per flavor
but the difference could be due to left-handed and right-handed states!
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Majorana Mass Term
Note that
and
Let’s try
(vR )c  (vc )L
(vL )c  (vc )R
LM L
is a left-handed field
is a right-handed field

mL
c
c

( vL ) vL  vL ( vL )
2

ok!
mL
(vL
)c
right handed field
LM R

vL
left handed field
mR
c
c

( vR ) vR  vR ( vR )
2
Graduiertenkolleg Bullay 12.9.2005
Lepton number violation!

works too!
Caren Hagner, Uni Hamburg
Dirac-Majorana Mass Term
mass term for each flavor:
 2 LDM


mD   (vL )c 
  h.c.
  
mR   vR 
m
c  L
 vL , (vR )  
 mD
mass matrix M
In order to obtain the mass eigenstates one must diagonalize M:
find unitary U with
 cos
U  
  sin 
sin  

cos 
 m1 0 
~


M  U MU  
 0 m2 
with
with the mass eigenstates:
vL 
 v1L 

   U 

c
 v2 L 
 ( vR ) 
Graduiertenkolleg Bullay 12.9.2005
2mD
tan2 
mR  mL
and mass eigenvalues:
m1, 2 

1
(mR  mL )  (mL  mR )2  4mD2
2

Caren Hagner, Uni Hamburg
What if…
1. mL = mR = 0:
pure Dirac case
θ = 45, m1=m2=mD.
2 degenerate Majorana states
can be combined to form 1 Dirac state.
2. mD = 0:
pure Majorana case
θ = 0, m1=mL m2=mR
3. mR≫ mD, mL= 0: seesaw model
θ = mD/mR≪ 1
mD2
m1 
,
mR
m1
mR
m2  mR
per neutrino flavor: one very light Majorana neutrino v1L = vL
one very heavy Majorana neutrino v2L = (vR)c
mD of the order of lepton masses, mR reflects scale of new physics
⇒ explains small neutrino masses!
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Lower Limit of Neutrino Mass
Super-K (atmospheric neutrinos):
m2atm = 2.5 × 10-3 eV2
 m(νi) ≥ 0.05 eV
This sets the energy scale
for mass search!
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Which mass hierarchy?
- Lightest neutrino mass not known
v1 v2 v3
- Δm2atm < 0 or >0 ?
v3
v2
v1
Δmsolar
0.05 eV
≲ 2 eV
Δmatm
Δmatm
Δmsolar
v2
v1
v3
?
0
normal hierarchy
inverted hierarchy
0
quasi-degenerate
Tritium β-Decay: Mainz/Troitsk
3
H  He  e  e
3
-
E0 = 18.6 keV
dN/dE = K × F(E,Z) × p × Etot × (E0-Ee) × [ (E0-Ee)2 – m2 ]1/2
m
Graduiertenkolleg Bullay 12.9.2005
  Uei m
2
2

2
i
i
Caren Hagner, Uni Hamburg
principle of an electrostatic filter with
magnetic adiabatic collimation (MAC-E)
adiabatic magnetic guiding
of ´s along field lines
in stray B-field of
s.c. solenoids:
Bmax = 6 T
Bmin = 3×10-4 T
energy analysis by
static retarding E-field
with varying strength:
high pass filter with
integral  transmission
for E>qU
Results from the MAINZ Experiment
Mainz Data (1998,1999,2001)
m2

 1.2  2.2  2.1 eV2
 m

 2.2eV 95%CL
The KArlsruhe TRItium Neutrino
Experiment
KATRIN
Ziel:
m   0.20 eV
Double-beta decay
0 -  decay
2 -  decay
u
d
d
e-
W
W
u
u
d
e
W
e
W
e-
d
e
e

e
e-
u
Lepton number violation
ΔL = 2
Summenenergie der Elektronen (E/Q)
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Neutrinoless Double Beta Decay
0 1
1/ 2
0
[T ]  G ( E0 , Z ) M
Phase space factor
0
GT
2
V
2
A
g

M F0
g
2
mv
2

Effective neutrino mass
Transition matrix element
Effective neutrino mass in 0νββ-decay:
m


3
mU
i
2
ei
i 1
Compare to β-decay:
m
Graduiertenkolleg Bullay 12.9.2005
2

  m U ei
2
i
2
i
Caren Hagner, Uni Hamburg
0v Doppel-Beta Experimente: Ergebnisse
m

 0.35 eV (90% CL)
Heidelberg-Moskau Collaboration, Eur.Phys.J. A12 (2001) 147
IGEX Collaboration, hep-ex/0202026, Phys. Rev. C59 (1999) 2108
HM-K
IGEX
2.1 × 1023
0.85 – 2.1
all 90%CL
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Jedoch: ein Teil der HdM Kollaboration veröffentlicht
Evidenz für 0v Doppel-Beta Zerfall!
?
(Q = 2039 keV für 76Ge Doppel-Beta Zerfall)
Zukunft: Heidelberg Ge Initiative (MPIK Heidelberg)
Phase I: 20kg angereichertes (86%) 76Ge, vgl. HDM
Phase II: 100 kgJahre, 0.1 – 0.3 eV
Phase III: O(1t) angereichertes 76Ge, 10meV
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
CUORICINO @ Gran Sasso (Start 2003)
2v Doppelbeta mit 130Te (Q=2529 keV)
18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3
40.7 kg of TeO2
Suche nach 0v Doppelbeta:
T 1/2 0v (130Te) > 7.5 x 1023 y
<mv> < 0.3 - 1. 6 eV
2 modules, 9 detector each,
crystal dimension 3x3x6 cm3
crystal mass 330 g
9 x 2 x 0.33 = 5.94 kg of TeO2
Graduiertenkolleg Bullay 12.9.2005
11 modules, 4 detector each,
crystal dimension 5x5x5 cm3
crystal mass 790 g
4 x 11 x 0.79 = 34.76 kg of TeO2
Caren Hagner, Uni Hamburg
End part 3
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
Boris Kayser:
(at v2002)
Graduiertenkolleg Bullay 12.9.2005
Caren Hagner, Uni Hamburg
LM L
LM R




mL

( vL ) c vL  vL ( vL ) c
2
mR

( vR ) c vR  vR ( vR ) c
2
Construct the Majorana fields:
c


v

(
v
)
1  vL  (vL )
2
R
R
1,2  (1,2 )c
c
 2LM L  mL11
 2LMR  mR22
Eigenstates of the interaction: vL and vR
Mass eigenstates: Φ1 (mass mL), Φ2 (mass mR)