Conditional Probabilities over Probabilistic and

Download Report

Transcript Conditional Probabilities over Probabilistic and

Conditional Probabilities over
Probabilistic and Nondeterministic
Systems
M. E. Andrés
and
P. van Rossum
Radboud Universiteit Nijmegen, The Netherlands.
Overview


Motivation
Background





Markov Decision Processes and Schedulers
Conditional Probabilities
pCTL
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
2
Miguel E. Andres
Radboud University
Overview


Motivation
Background





Markov Decision Processes and Schedulers
Conditional Probabilities
pCTL
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
3
Miguel E. Andres
Radboud University
Motivation

Model Checking
j= '
Model

Temporal Logics
LTL – CTL
(+ prob)
pCTL
(+ nondet)
pCTL
NEW (+ cond prob) cpCTL
TACAS - April 1st
Budapest, Hungary
§DeadL
P[§DeadL] · 0:1
P+ [§DeadL] · 0:1
P+ [§DeadLj¤SingU] · 0:1
4
Miguel E. Andres
Radboud University
Motivation

Conditional Probabilities
Risk assessment
Anonymity
Strong Anonymity
Probable innocence
P[dyke breaks| it rains heavily]
Diagnosability
P[A failed|error message E]

What we do
 Define
cpCTL
Deterministic Case
 Model Checker for cpCTL
Nondeterministic Case
 Present a Notion of Counterexamples
TACAS - April 1st
Budapest, Hungary
5
Miguel E. Andres
Radboud University
Overview


Motivation
Background





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
6
Miguel E. Andres
Radboud University
Background – MDPs
²
 The Model (MDP) ²
MDP =(S,s0 ; L; ¿ ), where:
²
²
 Example
S is the ¯nite state space of the system
s0 2 S is the initial state
L: S ! }(P ) is a labeling function
¿ : S ! }(Distr(S))
Probabilistic and Nondeterministic
Finite Paths
s0 s2
s0 s2 s3
..
.
TACAS - April 1st
Budapest, Hungary
7
Paths
s0 s2 (s3 )!
s0 (s1 )!
..
.
Miguel E. Andres
Radboud University
Background – Schedulers

Schedulers
: Finite Path ! Distr(S)
S2 ! ¼2
²P[s s s ] = 1
²P[s0 s2 s5 ] = 08
0 2 6
S2 ! ¼3
²P[s s s ] = 0
²P[s0 s2 s5 ] = 1
0 2 6
40
1
S2 !
4 ¼
2
3
S !
4 ¼
2
3
Schedulers resolve the Nondeterminism!
TACAS - April 1st
Budapest, Hungary
8
Miguel E. Andres
Radboud University
Background – pCTL
./2 f<; ·; >; ¸g

Syntaxis
© := P j © ^ © j :© j 8ª j 9ª j P
ª := ©U © j §© j ¤©

Semantic
s j= var
,
,
s j= Á ^ Ã
,
s j= :Á
,
s j= 8Á
,
s j= 9Á
s j= P· [Á] ,
a
¾
¾
¾
j= ÁU Ã
j= §Á
j= ¤Á
TACAS - April 1st
Budapest, Hungary
./a
[ª]
a 2 [0; 1]
Path
var 2 L(S)
s j= Á and s j= Ã
s 6j= Á
¾ j= Á for all f. paths ¾ starting from s
¾ j= Á for any f. path ¾ starting from s
max´ P [Á] , P+ [Á] · a
s;´
s
, Á holds until at some point à holds
, ¾ j= trueU Á
, ¾ j= :§:Á
9
State
Miguel E. Andres
Radboud University
Background – computing satisfaction

Example
3
1
+
= 0; 775
4 40
3 1 1¡
1
+ (
®) + ® = 0; 875
4 4 2
4
6j=
TACAS - April 1st
Budapest, Hungary
10
Miguel E. Andres
Radboud University
Background – Conditional Probabilities

Standard Conditional Probabilities
²
²
²
( ; F; P) is a probability space
A; B 2 F are two events
P(B) > 0
²
²
²
 Conditional Probabilities over MDPs
( s ; Bs ; P´ ) is the probability space
P´ (¢1 \ ¢2 )
j
P´ (¢1 ¢2 ) =
¢1 ; ¢2 2 Bs are two sets of paths
P´ (¢2 )
P´ (¢2 ) > 0
\ B)
P(A
P(A j B) =
P(B)
 Max and Min Conditional Probabilities
P+ (¢1 j ¢2 ) = sup P´ (¢1 j ¢2 )
P¡ (¢1 j ¢2 ) = inf
´ 2Sch>0
´ 2Sch>0
¢2
¢2
TACAS - April 1st
Budapest, Hungary
P´ (¢1 j ¢2 )
11
Miguel E. Andres
Radboud University
Overview


Motivation
Background





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
12
Miguel E. Andres
Radboud University
Our Logic – cpCTL
pCTL
cpCTL
P
j
© :=
© ^ © j :© j 8ª j 9ª j P

./a
ª := ©U © j §© j ¤©

[ª]
Interpretation
\ B]
P[A
P[AjB] =
P[B]
s j= P· [ÁjÃ]
a
TACAS - April 1st
Budapest, Hungary
P+ [ÁjÃ]
s
^^Ã]
PP [Á
[Á
Ã]··
s;´
s
max
aa
PP [Ã]
[Ã]
´ 2Sch
>0
13
s;´
s
Miguel E. Andres
Radboud University
cpCTL - Example
S0 j= P·
²P
0;99
[§B j¤P² ]
s0 ;´¼
P
2
[§ B j¤ P ] =
s0 ;´¼
P[s0 s1 ]+P[s0 s2 s3 ]
P[s0 s1 ]+P[s0 s2 s3 ]+P[s0 s2 s4 ]
3
max(1 ¡
TACAS - April 1st
Budapest, Hungary
[§ B ^ ¤ P ] ·
s0 ;´ P[s s ]
0;30
99
=
0 1
¤
P s ]+P[s
[ P] s s ]
P[s
31
P
j¤ P ] =
[§Bmax
´
14
=1¡
s00 ;´
1
0 2 6
2® ; 30 )
7 31
· 0; 99
Miguel E. Andres
Radboud University
2®
7
Overview


Motivation
Background





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
15
Miguel E. Andres
Radboud University
Model Checking Issues

Fully probabilistic case
Can be reduced to a pCTL* problem,
^ using
P [Á Ã]
j
P+ [Á Ã] = max s;´
s
P [Ã]
´
s;´

Probabilistic and Nondeterministic case
pCTL
cpCTL
History Independent
Schedulers
Semi History Independent
Schedulers
Bellman Equations
NO Bellman Equations
+ [Á ^ Ã]
P
Observation
jÃ] 6= s Deterministic Schedulers
Deterministic
Schedulers
P+ [Á
s
P+
[Ã]
s
TACAS - April 1st
Budapest, Hungary
16
Miguel E. Andres
Radboud University
Model Checking Issues – Nondeterministic case

cpCTL case
 Deterministic
Schedulers (Not trivial)
 Semi History Independent Schedulers
 No Bellman equations
Theorem: Deterministic Schedulers0
There exists Deterministic schedulers ´ and ´ such that
P [ÁjÃ] = P+ [ÁjÃ] and P [ÁjÃ] = P¡ [ÁjÃ]
´0
´
Coming…
TACAS - April 1st
Budapest, Hungary
17
Miguel E. Andres
Radboud University
Model Checking Issues – Nondeterministic case

Semi History Independent Schedulers
 Why?
If P+ [§B j§P ] = P
s0
then ´ satis¯es
8
< ¼3
¼
´(¾) =
: 5
¼1
s0 ;´
[ § B j§ P ]
if ¾ = s0
if ¾ = s0 s3
if ¾ = s0 s3 s0
 Definition
Stopping
condition
´ is '-semi History
Independent
if
² ´ takes always the same decision before the system reaches '
² ´ takes always the same decision after the system reaches '
Theorem: sHI
There exists deterministic
and Schedulers
sHI schedulers ´ and ´0 such that
P [ÁjÃ] = P+ [ÁjÃ] and P 0 [ÁjÃ] = P¡ [ÁjÃ]
´
TACAS - April 1st
Budapest, Hungary
´
18
Miguel E. Andres
Radboud University
Model Checking Issues – Nondeterministic case
 Local
1
(
Bellman equation
¡ ®) ¢ P+ [§P ] + ® ¢ P+ [§P ] + 1 ¢ P+ [§P ]
s3
s4
s5
2
2
P + [§ P ] =
s2
¼2
¼3
1 ¢
9 ¢
+
§
P [ P] +
P+ [§P]
s
s7
10
10
6
8
P+ [§P ]
s2
= max
¡ ¢
[§P ] + ® ¢ P+ [§P ] +
< ( 12 ®) P+
s
s
3
:
1
10
Bellman
Equations
TACAS - April 1st
Budapest, Hungary
¢ P+ [§P] +
s6
9
10
4
¼2¿ (s)
¢ P+ [§P ]
s5
Maximum over all outgoing
distributions ¼ of s
¢ P+ [§P]
0 s7
P+ [Á] = max @
s
1
2
X
t2succ(s)
19
1
¼(t) ¢ P+ [Á]A
t
Recursive
Computation
Miguel E. Andres
Radboud University
Model Checking Issues – Nondeterministic case

Why Not Bellman equations?
Bellman equation on cpCTL case…
0
P+ [ÁjÃ] = max @
s0
¼ 2 ¿ (s)
P+ [§B j¤P ] · 0; 99
X
t2 succ(s)
1
¼(t) ¢ P+ [ÁjÃ]A
t
s0
max(1 ¡
If ® ¸
7
62
2® ; 30 )
7 31
then
P+ [§B j¤P ] = P
s0
…but
· 0; 99
s0 ;´¼
3
[§B j¤P ]
P+ [§B j¤P ] = P
s2
TACAS - April 1st
Budapest, Hungary
s2 ;´¼
2
[§B j¤P ] = 1 ¡ 2 ¢ ®
20
Miguel E. Andres
Radboud University
Overview


Motivation
Background





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
21
Miguel E. Andres
Radboud University
Model Checker - Idea

µ
Ps;´
Idea
j
+
P [Á Ã] = max
s
´
P
µ
¶
^
[Á Ã]
s;´
[Ã]
¶
^
^
P [Áand sHI
Ã] Theorem}
P [Á Ã]
{By deterministic
j
¢
¢
¢
s;´
P+ [Á Ã] = max
;
; s;´k
1
s
P [Ã]
P [Ã]
s;´
s;´
1
k
where f´1 ; ´2 ; : : : ; ´k g is the set of all deterministic and sHI schedulers
©
f (s;
What
^ Ã]; P
Á; Ã)we
= actually
(P
[Ácompute
[Ã]); ¢ ¢ ¢ ; (P
s;´1
P+ [ÁjÃ] = max
s
TACAS - April 1st
Budapest, Hungary
³n a
b
s;´1
s;´k
[Á ^ Ã]; P
s;´k
[Ã])
o
´
j (a; b) 2 f (s; Á; Ã) ^ b 6= 0 [ f0g
22
Miguel E. Andres
Radboud University
ª
Model Checker - Example


Optimizations

Reusing information

Ussing pCTL algorithms after reaching the stopping condition
Example
¡
¢
U
j
U
Case P+ [Á1 Á2 Ã1 Ã2 ]
s
U Ã ]; P+[Ã U Ã ])g
f (s; Á1 U Á2 ; Ã1 U Ã2 ) = f(P+
[Ã
1
2
1
2
s
s
U
U
f
U
g
f (s; Á1 Á2 ; Ã1 Ã2 ) = (P+
[Á Á2 ]; 1)
s ¡1
f (s; Á1 U Á2 ; Ã1 U Ã2 ) = f(0; Ps [Ã1 U Ã2 ])g
f (s; Á1 U Á2 ; Ã1 U Ã2 ) = f(0; 0)g
f (s; Á1 U³Á2 ; Ã1 U Ã2 ) =
´
S
L
¼(t) ¯ f (t; Á U Á ; Ã U Ã )
¼2¿(s)
t2succ(s)
TACAS - April 1st
Budapest, Hungary
1
2
1
23
2
if
if
if
if
s j=
s j=
s j=
s j=
Á2
:Á ^ Ã
:Á2 ^ :2Á ^ :Ã
1
2
2
^
:
^
:
Á
Á
à ^ :Ã
1
2
1
if s j= Á1 ^ :Á2 ^ Ã1 ^ :Ã2
Miguel E. Andres
Radboud University
2
Overview


Motivation
Background





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
24
Miguel E. Andres
Radboud University
Counterexamples

Counterexamples
j
^Ã] ·
'
=
j
j
,
P
[Á
s = P· [Á Ã]
for all ´ s;´
a
a

P
Model
s;´
[Ã]
Why?
Lemma
P
[Á^Ã]
´
P [Ã]
P (¢1 )
´
1¡P (¢2 )
>a
´
>a
´
where ¢1 µ ¢Á^à , f! 2 j ! j= Á ^ Ãg
and ¢2 µ ¢:Ã , f! 2 j ! j= :Ãg
A Counterexamples
cpCTL
j
counterexample for Pfor
·a [Á Ã] is a pair (¢1 ; ¢2 ) of measurable sets
P (¢1 ) , for some
of paths satisfying ¢1 µ ¢Á^à , ¢2 µ ¢:à , and a < ¡
´
1 P (¢2 )
´
scheduler ´.
TACAS - April 1st
Budapest, Hungary
25
Miguel E. Andres
Radboud University
Overview


Motivation
Backgorund





Markov Decision Processes and Schedulers
pCTL
Conditional Probabilities
Our Logic (cpCTL)
Model Checking issues


Fully probabilistic case
Probabilistic and Nondeterministic case
 Comparison (pCTL vs cpCTL)
 cpCTL Complications



Model Checker
Counterexamples
Future work
TACAS - April 1st
Budapest, Hungary
26
Miguel E. Andres
Radboud University
Future Work


Implement our Algorithms in a probabilistic
model checker.
Investigate features of cpCTL (expressivness –
bisimulation issues).

Improve complexity.

Extend cpCTL to cpCTL*.

More research about counterexamples in cpCTL
and cpCTL*.
TACAS - April 1st
Budapest, Hungary
27
Miguel E. Andres
Radboud University
Thanks for your attention!
TACAS - April 1st
Budapest, Hungary
28
Miguel E. Andres
Radboud University
Why Deterministic Schedulers?
s0
®
s1
Á Ã
1¡®
P [ÁjÃ] =
s0
®P [Á^Ã]+(1¡®)P [Á^Ã]
s1
s2
¡
®P [Ã]+(1 ®)P [Ã]
s1
s2
s2
Á Ã
Lema: Let v1 ; v2 2 [0; 1) and w1 ; w2 2 (0; 1). Then the function
®)v2 is monotonous.
f : R ! R de¯ned by f (®) , ®v1 +(1¡
¡
®w1 +(1 ®)w2
TACAS - April 1st
Budapest, Hungary
29
Miguel E. Andres
Radboud University